• Title/Summary/Keyword: Superplastic Forging

Search Result 2, Processing Time 0.018 seconds

Process Design in Superplastic Forging of a Jet Engine Disk by the Finite Element Method (유한요소법을 이용한 제트엔진 디스크의 초소성 단조공정설계)

  • 이진희;강범수;김왕도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.876-886
    • /
    • 1994
  • Process design in superplastic forming to produce a Nickel-base jet engine disk has been carried out using the rigid-viscoplastic finite element method. This study aims at deriving systematic procedures in forging of superalloy engine disk, and develops a simple scheme to control strainrate within a range of superplastic deformation during the forging operation. The new process, a pancake type preform being used, is designed to have less manufacturing time, and more even distribution of effective strain in the final product, while the conventional superplastic forging of an engine disk has been produced from a cylindrical billet. The jet engine company, Pratt & Whitney, provided the basic information on the manufacturing process of superplastic forging of a jet engine disk.

A Study on the Micro-Formability of Al 5083 Superplastic Alloy Using Micro-Forging System (마이크로 단조 시스템을 이용한 Al 5083 초소성 합금의 마이크로 성형성에 관한 연구)

  • Son S. C.;Kang S. G.;Park K. Y.;Na Y. S.;Lee J. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.432-438
    • /
    • 2005
  • Among the most of manufacturing process, plastic deformation method offers a significant advantage in productivity and enable mass production with controlled quality and low cost. From the point of view, micro forming is a well suited technology in manufacturing very small metallic parts, in particular for mass production, as they are required in many industrial products. Meanwhile, Al 5083 superplastic alloy with very small grains has a great advantage in achieving micro deformation under low stress due to its relatively low strength at a specific high temperature range. This paper describes the micro formability of Al 5083 superplastic alloy and its application to die forging of micro patterns. Micro formability tests of Al 5083 superplastic alloy were carried out with the specially designed micro forging system by using V-grooved micro dies and pyramidal dies made of (100) silicon. With these dies, micro forging was conducted by varying the applied load, material temperature and forging time The micro formability of Al 5083 superplastic alloy was evaluated by comparing $R_f$ value, where $R_f\;=\;A_f/A_v$ ($A_v$ : cross-sectional area of the flowed metal, $A_v$ : cross sectional area of V-groove). The micro formability of 3 dimensional Patterns was also evaluated using Pyramidal type micro dies.