• 제목/요약/키워드: Superplastic Alloy

검색결과 49건 처리시간 0.043초

분말야금 Al-Li 합금의 초소성 변형 특성 (Superplastic Deformation Characteristics in Powder Metallurgy Al-Li Aluminum Alloy)

  • 장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.129-130
    • /
    • 1999
  • The superplastic deformation characteristics is powder metallurgy(PM) Al-Li alloy has been studied within the framework of a recently proposed internal variable theory of superplasticity(SSP). The flow curves were obtained by performing a series of load relaxation tests at the temperature range from 45$0^{\circ}C$ to 52$0^{\circ}C$ It has been found that the overall flow curves were separated into the grain boundary sliding(GBS) and the accommodating dislocation glide processes/ The tensile curves were also obtained to clarify the superplastic deformation bahavior of PM Al-Li alloy. The microstructural features of PM AL-Li alloy have been examined through the transmission electron microscopy.

  • PDF

ECAP 가공한 Zn-Al 합금의 초소성 변형특성 (Superplastic Deformation Behavior of a Zn-Al Alloy Fabricated by ECAP)

  • 정재용;김근준;나길환;하태권
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.421-424
    • /
    • 2009
  • Superplastic deformation behavior and texture evolution after equal channel angular pressing (ECAP) of Zn-0.3Al alloy were investigated in this study. ECAP was conducted at temperatures from $40^{\circ}C$ to $160^{\circ}C$ on the plate type specimens of 5 mm thickness and 20 mm width. The specimens obtained by ECAP showed typical texture with basal poles tilted away from the ND toward ED. A series of compression and tensile tests was carried out at temperatures from RT to $200^{\circ}C$ under the strain rate from 0.03 to 10/s. After ECAP of the Zn-Al alloy, elongation was dramatically increased up to 1000% at above $60^{\circ}C$. The effects of ECAP on the texture and anisotropy in the superplastic deformation bebavior were found to be negligible.

  • PDF

Ti-6Al-4V 합금의 초소성 벌지성형에 미치는 배압력의 영향 (A Study on the Effect of Back Pressure on the Superplastic Bulge Forming of Ti-6Al-4V Alloy)

  • 송유준;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.175-178
    • /
    • 1997
  • A modified Mukerjee's model considering the microstructural evolution was developed to study the superplastic bulge forming process of Ti-6Al-4V alloy. Through the microstructual observation after deformation, it was found that the grain growth rate of uniaxially tested specimens was different from that of biaxially deformed specimens. From this result, bulge forming experiments with and without back pressure were performed to examine the grain growth behavior and to compare the results of biaxial test with those of triaxial test. Good agreement between the prediction by a modified Mukerjee's model and the experimental measurements was obtained for bulge profile and thickness distribution.

  • PDF

용탕단조법에 의한 휘스커강화 Al합금기 복합재료의 고속초소성 (High Strain Rate Superplasticity of Whisker Reinforced Aluminum Alloy Matrix Composites Fabricated by Squeeze Casting)

  • 임석원;유전의칙
    • 한국주조공학회지
    • /
    • 제21권6호
    • /
    • pp.359-365
    • /
    • 2001
  • The superplastic behavior of whisker reinforced aluminum alloy matrix composites fabricated by squeeze casting as one of high pressure routes was investigated. The preforms of ${\alpha}-Si_3N_4$ and ${\beta}-SiC$ whiskers without any binder as a reinforcement were used. The matrix materials were 2024 and 7075 aluminum alloys. For the purpose of optimum superplastic condition, respectively, the whiskers volume fraction, extrusion temperature, tensile test temperature and initial strain rate were changed. Fracture surface of tested specimens were observed by SEM. By the results, it became possible to produce superplastic composites by applying only a hot extrusion process to composites obtained by the squeeze casting. The superplastic composites developed are ${\alpha}-Si_3N_4w/7075$, ${\alpha}-Si_3N_4w/2024$ and ${\beta}-SiCw/2024$ systems at high strain rate.

  • PDF

Fe-10Mn-3.5Si 합금의 초소성에 미치는 반복 냉연 및 소둔의 영향 (Effect of Repetitive Cold Rolling and Annealing on the Superplasticity of Fe-10Mn-3.5Si Alloy)

  • 정현빈;최석원;이영국
    • 열처리공학회지
    • /
    • 제35권4호
    • /
    • pp.211-219
    • /
    • 2022
  • It is known that superplastic materials with ultrafine grains have high elongation mainly due to grain boundary sliding. Therefore, in the present study we examined the influence of grain refinement, caused by a repetitive cold rolling and annealing process, on both superplastic elongation and superplastic deformation mechanism. The cold rolling and annealing process was repetitively applied up to 4 times using Fe-10Mn-3.5Si alloy. High-temperature tensile tests were conducted at 763 K with an initial strain rate of 1 × 10-3 s-1 using the specimens. The superplastic elongation increased with the number of the repetitive cold rolling and annealing process; in particular, the 4 cycled specimen exhibited the highest elongation of 372%. The primary deformation mechanism of all specimens was grain boundary sliding between recrystallized α-ferrite and reverted γ-austenite grains. The main reason for the increase in elongation with the number of the repetitive cold rolling and annealing process was the increase in fractions of fine recrystallized α-ferrite and reverted γ-austenite grains, which undergo grain boundary sliding.

변형률속도와 온도에 따른 SPF8090 Al-Li 초소성 재료의 물성 특성 (Characterization of superplastic material SPF8090 AI-Li with the variation of the strain rate and the temperature)

  • 이기석;허훈
    • 소성∙가공
    • /
    • 제6권5호
    • /
    • pp.425-434
    • /
    • 1997
  • A superplastic material, aluminum-lithium alloy 8090, was examined with uniaxial tensile tests to investigate its thermomechanical behavior. The tests were carried out at the strain rate ranging from $2X10^4 to 1X10^2$ and at the temperature from 48$0^{\circ}C$ to 54$0^{\circ}C$. The experiments produced force-dis-placement curves which were converted to stress-strain curves. From the curves, the optimum conditions of superplastic forming were obtained by deteriming the strain rate sensitivety, the optimum strain rate, and the strength coefficient for various forming temperatures.

  • PDF

미세 결정립 Ti-6Al-2Sn-4Zr-2Mo-0.1Si 합금의 저온 초소성 변형 거동 (Low-Temperature Superplastic Deformation Behavior of Fine-Grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si Alloy)

  • 박찬희;이병갑;이종수
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.544-549
    • /
    • 2009
  • This study aimed to elucidate the deformation mechanism during low-temperature superplasticity of fine-grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy in the context of constitutive equation. For this purpose, initial coarse equiaxed microstructure was refined to $2.2{\mu}m$ via dynamic globularization. Globularized microstructure exhibited large superplastic elongations(434-826%) at temperatures of $650-750^{\circ}C$ and strain rate of $10^{-4}s^{-1}$. It was found that the main deformation mechanism of fine-grained material was grain boundary sliding accommodated by dislocation motion with both stress exponent (n) and grain size exponent (p) values of 2. When the alpha grain size, not sub-grain size, was considered to be an effective grain size, the apparent activation energy for low-temperature superplasticity of the present alloy(169kJ/mol) was closed to that of Ti-6Al-4V alloy(160kJ/mol).

Ti-3Al-2.5V 튜브의 초소성 하이드로포밍과 확산접합으로 제조된 T형 구조물의 접합 특성 분석 (Analysis of Bonding Characteristics of a T-shape Structure Fabricated by Superplastic Hydroforming and Diffusion Bonding using two Ti-3Al-2.5V tubes)

  • 유영훈;이상용
    • 열처리공학회지
    • /
    • 제31권2호
    • /
    • pp.49-55
    • /
    • 2018
  • A T-shape structure was manufactured by the superplastic forming and diffusion bonding process using two Ti-3Al-2.5V alloy tubes. A Ti-3Al-2.5V tube was prepared for the hydroforming in the superplastic condition until it reaches a surface area such as a roof welded in the hole of another Ti-3Al-2.5V tube. Afterward, the superplastic forming process and the diffusion bonding process were carried out simultaneously until the appropriate bonding along the interface area of two Ti-3Al-2.5V tubes was obtained. The bonding qualities were different at each location of the entire interface according to the applied process conditions such as strain, pressure, temperature, holding time, geometries, etc. The microstructures of bonding interface have been observed to understand the characteristics of the applied processes in this study.

Al-Cu-Zr 합금 초소성 성형품의 기계적 성질 (mechanical properties of Al-Cu-Zr alloy parts by superplastic forming)

  • 이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.163-170
    • /
    • 1999
  • Although the bulge forming technique is currently employed in commercial superplastic forming processes, the uniaxial tensile test is still the most commonly used method for the evaluation of the superplasticity of materials due to its simplicity in testing. However, the results obtained from the uniaxial tensile test can not be applied in analyzing the characteristics of the real parts formed in multi-axial stress state. In this paper, using the tensile test specimen obtained from the square cup manufactured by superplastic forming, tensile strength and elongation have been investigated according to the strain and cavity volume fraction. From the result of experiment, tensile strength and elongation are decreased according to the strain and cavity in Al-6%Cu-0.4%Zr alloy. On condition of uniaxial stress, cavity volume fraction is increased on linear according to the increasement of thickness strain. However, on condition of biaxial stress there are critical point( E t=1.5-1.6) that the slope, the ratio of cavity volume fraction and strain, have been changed. Therefore, cavity volume fraction is different with respect to stress condition, although the same strain.

  • PDF

확률함수를 이용한 비균질 Ti-6Al-4V 합금의 변형 및 파손해석 (Deformation and Failure Analysis of Heterogeneous Microstructures of Ti-6Al-4V Alloy using Probability Functions)

  • 김태원;고은영
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.685-692
    • /
    • 2004
  • A stochastic approach has been presented for superplastic deformation of Ti-6Al-4V alloy, and probability functions are used to model the heterogeneous phase distributions. The experimentally observed spatial correlation functions are developed, and microstructural evolutions together with superplastic deformation behavior have been investigated by means of the two-point and three-point probability functions. The results have shown that the probability varies approximately linearly with separation distance, and deformation enhanced probability changes during the process. The stress-strain behavior with the evolutions of probability function can be correctly predicted by the model. The finite element implementation using Monte Carlo simulation associated with reconstructed microstructures shows that better agreement with experimental data of failure strain on the test specimen.