• Title/Summary/Keyword: Superplastic

Search Result 108, Processing Time 0.023 seconds

Heat-Treated Microstructures of Ti-3Al-2.5V Tube for the Successive Process of Superplastic Hydroforming and Diffusion Bonding (초소성 하이드로포밍과 확산 접합의 연속 공정을 위한 Ti-3Al-2.5V 튜브의 열처리 미세조직)

  • Bae, Geun-Soo;Lee, Sang-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.2
    • /
    • pp.56-61
    • /
    • 2016
  • Heating experiments using the Ti-3Al-2.5V tube materials in a vacuum furnace have been performed to investigate a pertinent range of working temperatures and holding times for the development of the successive or simultaneous operation of superplastic hydroforming and diffusion bonding. The specimens were heated at $820^{\circ}C$, $870^{\circ}C$ and $920^{\circ}C$ respectively. Holding times at each temperature were varied up to 4 hours. Holding times longer than 1 hour were selected to consider the diffusion bonding process after or during the hydroforming process in the superplastic state. Grain sizes were varied from $5.7{\mu}m$ of the as-received tube to $9.2{\mu}m$ after heating at $870^{\circ}C/4hours$. Homogeneus granular microstructures could be maintained up to $870^{\circ}C$, while microstructures at $920^{\circ}C$ showed no more granular type.

High Strain Rate Superplasticity of Whisker Reinforced Aluminum Alloy Matrix Composites Fabricated by Squeeze Casting (용탕단조법에 의한 휘스커강화 Al합금기 복합재료의 고속초소성)

  • Lim, Suk-Won;Nishida, Yoshinori
    • Journal of Korea Foundry Society
    • /
    • v.21 no.6
    • /
    • pp.359-365
    • /
    • 2001
  • The superplastic behavior of whisker reinforced aluminum alloy matrix composites fabricated by squeeze casting as one of high pressure routes was investigated. The preforms of ${\alpha}-Si_3N_4$ and ${\beta}-SiC$ whiskers without any binder as a reinforcement were used. The matrix materials were 2024 and 7075 aluminum alloys. For the purpose of optimum superplastic condition, respectively, the whiskers volume fraction, extrusion temperature, tensile test temperature and initial strain rate were changed. Fracture surface of tested specimens were observed by SEM. By the results, it became possible to produce superplastic composites by applying only a hot extrusion process to composites obtained by the squeeze casting. The superplastic composites developed are ${\alpha}-Si_3N_4w/7075$, ${\alpha}-Si_3N_4w/2024$ and ${\beta}-SiCw/2024$ systems at high strain rate.

  • PDF

Superplastic Deformation Behavior of a Zn-Al Alloy Fabricated by ECAP (ECAP 가공한 Zn-Al 합금의 초소성 변형특성)

  • Jung, J.Y.;Kim, K.J.;Na, G.H.;Ha, T.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.421-424
    • /
    • 2009
  • Superplastic deformation behavior and texture evolution after equal channel angular pressing (ECAP) of Zn-0.3Al alloy were investigated in this study. ECAP was conducted at temperatures from $40^{\circ}C$ to $160^{\circ}C$ on the plate type specimens of 5 mm thickness and 20 mm width. The specimens obtained by ECAP showed typical texture with basal poles tilted away from the ND toward ED. A series of compression and tensile tests was carried out at temperatures from RT to $200^{\circ}C$ under the strain rate from 0.03 to 10/s. After ECAP of the Zn-Al alloy, elongation was dramatically increased up to 1000% at above $60^{\circ}C$. The effects of ECAP on the texture and anisotropy in the superplastic deformation bebavior were found to be negligible.

  • PDF

Effect of Repetitive Cold Rolling and Annealing on the Superplasticity of Fe-10Mn-3.5Si Alloy (Fe-10Mn-3.5Si 합금의 초소성에 미치는 반복 냉연 및 소둔의 영향)

  • Jeong, Hyun-Bin;Choi, Seok-Won;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.4
    • /
    • pp.211-219
    • /
    • 2022
  • It is known that superplastic materials with ultrafine grains have high elongation mainly due to grain boundary sliding. Therefore, in the present study we examined the influence of grain refinement, caused by a repetitive cold rolling and annealing process, on both superplastic elongation and superplastic deformation mechanism. The cold rolling and annealing process was repetitively applied up to 4 times using Fe-10Mn-3.5Si alloy. High-temperature tensile tests were conducted at 763 K with an initial strain rate of 1 × 10-3 s-1 using the specimens. The superplastic elongation increased with the number of the repetitive cold rolling and annealing process; in particular, the 4 cycled specimen exhibited the highest elongation of 372%. The primary deformation mechanism of all specimens was grain boundary sliding between recrystallized α-ferrite and reverted γ-austenite grains. The main reason for the increase in elongation with the number of the repetitive cold rolling and annealing process was the increase in fractions of fine recrystallized α-ferrite and reverted γ-austenite grains, which undergo grain boundary sliding.

Evaluation of Wear in Inconel 600 Tools in Superplastic Forming of Ti6Al4V Sheet (Ti6Al4V 판재의 초소성 성형공정에서 Inconel 600 금형 마모 평가)

  • J. Bang;J. Song;M. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.112-117
    • /
    • 2024
  • In this study, the friction and wear characteristics of Inconel 600 in the superplastic forming process of Ti6Al4V were evaluated through pin-on-disc tests. To achieve an efficient and systematic experimental design, the Taguchi method was employed. The wear track of the Inconel 600 pin showed scratches in the sliding contact direction, confirming that the wear mechanism is abrasive wear. Through sensitivity analysis such as ANOVA and Main effects, it was confirmed that both normal force and sliding distance have a significant impact on the wear. Changes in sliding velocity and distance did not affect the friction coefficient, which remained relatively constant at approximately 0.380. The wear prediction model for Inconel 600 in the superplastic forming of Ti6Al4V was constructed, which can be utilized as a guideline for the prediction and management of tool wear.

The Effect on Partial Melting on Superplastic Flow of ${Si_3}{N_{4p}}$/2124 Al Composites (II) (국부적 용융이 ${Si_3}{N_{4p}}$/2124 Al 복합재의 초소성 거동에 미치는 영향 (II))

  • Jeong, Ha-Guk;Kim, Hye-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.585-589
    • /
    • 2001
  • Many experimental results have revealed that the development of cavitaition during tensile deformation is limited by the Presence of liquid phases. However, the presence of liquid phases does not always lead to high-strain-rate superplasticity, because too much liquid causes intergranular decohesion at grain boundaries/interfaces in metal-matrix composites. Thus, it is important to examine the nature of interfaces of superplastic composites in order to understand the origin of superplastic flow related to liquid grain boundaries during high-strain-rate superplastic deformation. This study shows that a large elongation is obtained at the temperature, that is close to the onset temperature for partial melting in the superplastic composites, but the elongation significantly decreases at slightly higher temperatures, which are close to the end temperature fur partial melting. This indicates that there is an optimum amount of the liquid phase for obtaining high-strain-rate superplasticity in these materials.

  • PDF

Fabrication of Lightweight Sandwich Structural Components with Superplastic Forming/Diffusion Bonding Technology (초소성/확산접합 기술을 이용한 티타늄 샌드위치 경량구조물 제작)

  • Lee, Ho-Sung;Yoon, Jong-Hoon;Yi, Yeong-Moo;Shin, Dong Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.778-782
    • /
    • 2007
  • In the present study, design and forming process of fabricating titianium lightweight components are developed with applicaton of superplastic forming and diffusion bonding technology. SPF/DB(Superplastic forming/Diffusion bonding) technology is one of the advanced technologies to reduce production cost and weight and currently applied to aircrafts and space launchers in foreign countries. The present study constructs an analysis model to predict superplastic forming behavior of titanium alloy, which is well known for its resistance to deform. The experimental results show the forming of titanium lightweight sandwich structure is successfully performed from 3 sheets of Ti-6Al-4V. The results demonstrate that the developed technology to process design of SPF/DB by the finite element method can be applied to various types of components.

Superplastic Forming Process Analysis for Aluminium Body Forming (알루미늄 차체성형을 위한 초소성 성형공정해석)

  • Kim C. G.;Kim Y. H.;Woo H. P.;Kim M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.89-92
    • /
    • 2001
  • A rigid-viscoplastic finite element code for superplastic forming processes has been developed The material is assumed to be isotropic and a modified Coulomb friction law is adopted to explain contact between tool and sheet. This code uses the triangular element based on the membrane approximation and a hierarchical contact searching method is implemented The optimum pressure-time relationships for target strain rate are calculated by several pressure control algorithms. By the analysis, optimum pressure-time curves and deformation behavior are predicted.

  • PDF

Analysis of 3-D Superplastic Forming/Diffusion Bonding Process Using a Hierarchical Contact Searching Method(I) (계층적 접촉 탐색방법을 이용한 3-D 초소성 성형/확산접합의 공정설계(I))

  • Kang, Y.K.;Song, J.S.;Hong, S.S.;Kwon, Y.N.;Lee, J.H.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.138-143
    • /
    • 2007
  • Superplastic forming/diffusion bonding (SPF/DB) processes were analyzed using a 3-D rigid visco-plastic finite element method. A constant-triangular element based on membrane approximation and an incremental theory of plasticity are employed for the formulation. The coulomb friction law is used for interface friction between tool and material. Pressure-time relationship for a given optimal strain rate is calculated by stress and pressure values at the previous iteration step. In order to improve the contact searching, hierarchical search algorithm has been applied and implemented into the code. Various geometries including sandwich panel and 3 sheet shape for 3-D SPF/DB model are analyzed using the developed program. The validity fer the analysis is verified by comparison between analysis and results in the literature.

Deformation Mechanism Map for Creep and Superplastic Deformation in $YBa_2Cu_3O_{7-x}$ Ceramic Superconductors ($YBa_2Cu_3O_{7-x}$ 세라믹 초전도체의 크리프와 초소성변형에 대한 변형기관도)

  • 윤존도;초우예
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.718-724
    • /
    • 1996
  • Deformation mechanism map of Langdon-Mohammed type for YBa2Cu3O7-x superconducting ceramic was constructed by considering mechanisms of Nabarro-Herring Coble and powder-law creep and grain boundary sliding (GBS) with an accommodation by grain boundary diffusion. The map was found consistent with experi-mental results not only of the creep the also of the superplastic deformation. It showed the transition from interface reaction-controlled to the grain boundary diffusion-controlled GBS mechanism at about 1 ${\mu}{\textrm}{m}$ grain size and 100 MPa flow stress in agreement with the experimental results.

  • PDF