• Title/Summary/Keyword: Superpixels

Search Result 25, Processing Time 0.02 seconds

Efficient Superpixel Generation Method Based on Image Complexity

  • Park, Sanghyun
    • Journal of Multimedia Information System
    • /
    • v.7 no.3
    • /
    • pp.197-204
    • /
    • 2020
  • Superpixel methods are widely used in the preprocessing stage as a method to reduce computational complexity by simplifying images while maintaining the characteristics of the images in the computer vision applications. It is common to generate superpixels of similar size and shape based on the pixel values rather than considering the characteristics of the image. In this paper, we propose a method to control the sizes and shapes of generated superpixels, considering the contents of an image. The proposed method consists of two steps. The first step is to over-segment an image so that the boundary information of the image is well preserved. In the second step, generated superpixels are merged based on similarity to produce the target number of superpixels, where the shapes of superpixels are controlled by limiting the maximum size and the proposed roundness metric. Experimental results show that the proposed method preserves the boundaries of the objects in an image more accurately than the existing method.

Superpixel Segmentation Scheme Using Image Complexity (영상의 복잡도를 고려한 슈퍼픽셀 분할 방법)

  • Park, Sanghyun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.85-92
    • /
    • 2018
  • When using complicated image processing algorithms, we use superpixels to reduce computational complexity. Superpixel segmentation is a method of grouping pixels having similar characteristics into one group. Since superpixel is used as a preprocessing of image processing, it should be generated quickly, and the edge components of the image should be well preserved. In this paper, we propose a method of generating superpixels with a small amount of computation while preserving edge components well. In the proposed method, superpixels of an image are generated by using the existing k-mean method, and similar superpixels among the generated superpixels are merged to make final superpixels. When merging superpixels, the similarity is calculated only for superpixels. Therefore, the amount of computation is maintained small. It is shown by experimental results that the superpixel images produced by the proposed method are conserving edge information of the original image better than those produced by the existing method.

Efficient graph-based two-stage superpixel generation method (효율적인 그래프 기반 2단계 슈퍼픽셀 생성 방법)

  • Park, Sanghyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1520-1527
    • /
    • 2019
  • Superpixel methods are widely used in the preprocessing stage as a method to reduce computational complexity by simplifying images while maintaining the characteristics of images in the field of computer vision. It is common to generate superpixels with a regular size and form based on the pixel values rather than considering the characteristics of the image. In this paper, we propose a method to generate superpixels considering the characteristics of an image according to the application. The proposed method consists of two steps, and the first step is to oversegment an image so that the boundary information of the image is well preserved. In the second step, superpixels are merged based on similarity to produce the desired number of superpixels, where the form of superpixels are controlled by limiting the maximum size of superpixels. Experimental results show that the proposed method preserves the boundaries of an image more accurately than the existing method.

Texture superpixels merging by color-texture histograms for color image segmentation

  • Sima, Haifeng;Guo, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2400-2419
    • /
    • 2014
  • Pre-segmented pixels can reduce the difficulty of segmentation and promote the segmentation performance. This paper proposes a novel segmentation method based on merging texture superpixels by computing inner similarity. Firstly, we design a set of Gabor filters to compute the amplitude responses of original image and compute the texture map by a salience model. Secondly, we employ the simple clustering to extract superpixles by affinity of color, coordinates and texture map. Then, we design a normalized histograms descriptor for superpixels integrated color and texture information of inner pixels. To obtain the final segmentation result, all adjacent superpixels are merged by the homogeneity comparison of normalized color-texture features until the stop criteria is satisfied. The experiments are conducted on natural scene images and synthesis texture images demonstrate that the proposed segmentation algorithm can achieve ideal segmentation on complex texture regions.

Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles

  • Sima, Haifeng;Mi, Aizhong;Han, Xue;Du, Shouheng;Wang, Zhiheng;Wang, Jianfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5015-5038
    • /
    • 2018
  • In this paper, a novel spectral-spatial joint sparse representation algorithm for hyperspectral image classification is proposed based on multi-layer superpixels in various scales. Superpixels of various scales can provide complete yet redundant correlated information of the class attribute for test pixels. Therefore, we design a joint sparse model for a test pixel by sampling similar pixels from its corresponding superpixels combinations. Firstly, multi-layer superpixels are extracted on the false color image of the HSI data by principal components analysis model. Secondly, a group of discriminative sampling pixels are exploited as reconstruction matrix of test pixel which can be jointly represented by the structured dictionary and recovered sparse coefficients. Thirdly, the orthogonal matching pursuit strategy is employed for estimating sparse vector for the test pixel. In each iteration, the approximation can be computed from the dictionary and corresponding sparse vector. Finally, the class label of test pixel can be directly determined with minimum reconstruction error between the reconstruction matrix and its approximation. The advantages of this algorithm lie in the development of complete neighborhood and homogeneous pixels to share a common sparsity pattern, and it is able to achieve more flexible joint sparse coding of spectral-spatial information. Experimental results on three real hyperspectral datasets show that the proposed joint sparse model can achieve better performance than a series of excellent sparse classification methods and superpixels-based classification methods.

A Method of Color Image Segmentation Based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) Using Compactness of Superpixels and Texture Information (슈퍼픽셀의 밀집도 및 텍스처정보를 이용한 DBSCAN기반 칼라영상분할)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.89-97
    • /
    • 2015
  • In this paper, a method of color image segmentation based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) using compactness of superpixels and texture information is presented. The DBSCAN algorithm can generate clusters in large data sets by looking at the local density of data samples, using only two input parameters which called minimum number of data and distance of neighborhood data. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. Each superpixel is consist of pixels with similar features such as luminance, color, textures etc. Superpixels are more efficient than pixels in case of large scale image processing. In this paper, superpixels are generated by SLIC(simple linear iterative clustering) as known popular. Superpixel characteristics are described by compactness, uniformity, boundary precision and recall. The compactness is important features to depict superpixel characteristics. Each superpixel is represented by Lab color spaces, compactness and texture information. DBSCAN clustering method applied to these feature spaces to segment a color image. To evaluate the performance of the proposed method, computer simulation is carried out to several outdoor images. The experimental results show that the proposed algorithm can provide good segmentation results on various images.

A Setting of Initial Cluster Centers and Color Image Segmentation Using Superpixels and Fuzzy C-means(FCM) Algorithm (슈퍼픽셀과 FCM을 이용한 클러스터 초기값 설정 및 칼라영상분할)

  • Lee, Jeong-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.761-769
    • /
    • 2012
  • In this paper, a setting method of initial cluster centers and color image segmentation using superpixels and Fuzzy C-means(FCM) algorithm is proposed. Generally, the FCM can be widely used to segment color images, and an element is assigned to any cluster with each membership values in the FCM. However the algorithm has a problem of local convergence by determining the initial cluster centers. So the selection of initial cluster centers is very important, we proposed an effective method to determine the initial cluster centers using superpixels. The superpixels can be obtained by grouping of some pixels having similar characteristics from original image, and it is projected $La^*b^*$ feature space to obtain the initial cluster centers. The proposed method can be speeded up because number of superpixels are extremely smaller than pixels of original image. To evaluate the proposed method, several color images are used for computer simulation, and we know that the proposed method is superior to the conventional algorithm by the experimental results.

Color Image Segmentation Using Characteristics of Superpixels (슈퍼픽셀특성을 이용한 칼라영상분할)

  • Lee, Jeong-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.649-651
    • /
    • 2012
  • In this paper, a method of segmenting color image using characteristics of superpixels is proposed. A superpixel is consist of several pixels with same features such as luminance, color, textures etc. The superpixel can be used for image processing and analysis with large scale image to get high speed processing. A color image can be transformed to $La^*b^*$ feature space having good characteristics, and the superpixels are grouped by clustering and gradient-based algorithm.

  • PDF

SuperDepthTransfer: Depth Extraction from Image Using Instance-Based Learning with Superpixels

  • Zhu, Yuesheng;Jiang, Yifeng;Huang, Zhuandi;Luo, Guibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4968-4986
    • /
    • 2017
  • In this paper, we primarily address the difficulty of automatic generation of a plausible depth map from a single image in an unstructured environment. The aim is to extrapolate a depth map with a more correct, rich, and distinct depth order, which is both quantitatively accurate as well as visually pleasing. Our technique, which is fundamentally based on a preexisting DepthTransfer algorithm, transfers depth information at the level of superpixels. This occurs within a framework that replaces a pixel basis with one of instance-based learning. A vital superpixels feature enhancing matching precision is posterior incorporation of predictive semantic labels into the depth extraction procedure. Finally, a modified Cross Bilateral Filter is leveraged to augment the final depth field. For training and evaluation, experiments were conducted using the Make3D Range Image Dataset and vividly demonstrate that this depth estimation method outperforms state-of-the-art methods for the correlation coefficient metric, mean log10 error and root mean squared error, and achieves comparable performance for the average relative error metric in both efficacy and computational efficiency. This approach can be utilized to automatically convert 2D images into stereo for 3D visualization, producing anaglyph images that are visually superior in realism and simultaneously more immersive.

Salient Object Detection via Multiple Random Walks

  • Zhai, Jiyou;Zhou, Jingbo;Ren, Yongfeng;Wang, Zhijian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1712-1731
    • /
    • 2016
  • In this paper, we propose a novel saliency detection framework via multiple random walks (MRW) which simulate multiple agents on a graph simultaneously. In the MRW system, two agents, which represent the seeds of background and foreground, traverse the graph according to a transition matrix, and interact with each other to achieve a state of equilibrium. The proposed algorithm is divided into three steps. First, an initial segmentation is performed to partition an input image into homogeneous regions (i.e., superpixels) for saliency computation. Based on the regions of image, we construct a graph that the nodes correspond to the superpixels in the image, and the edges between neighboring nodes represent the similarities of the corresponding superpixels. Second, to generate the seeds of background, we first filter out one of the four boundaries that most unlikely belong to the background. The superpixels on each of the three remaining sides of the image will be labeled as the seeds of background. To generate the seeds of foreground, we utilize the center prior that foreground objects tend to appear near the image center. In last step, the seeds of foreground and background are treated as two different agents in multiple random walkers to complete the process of salient object detection. Experimental results on three benchmark databases demonstrate the proposed method performs well when it against the state-of-the-art methods in terms of accuracy and robustness.