• 제목/요약/키워드: Superpixel Characteristics

검색결과 9건 처리시간 0.028초

칼라특징공간별 SLIC기반 슈퍼픽셀의 특성비교 (A Comparison of Superpixel Characteristics based on SLIC(Simple Linear Iterative Clustering) for Color Feature Spaces)

  • 이정환
    • 디지털산업정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.151-160
    • /
    • 2014
  • In this paper, a comparison of superpixel characteristics based on SLIC(simple linear iterative clustering) for several color feature spaces is presented. Computer vision applications have come to rely increasingly on superpixels in recent years. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. A superpixel is consist of pixels with similar features such as luminance, color, textures etc. Thus superpixels are more efficient than pixels in case of large scale image processing. Generally superpixel characteristics are described by uniformity, boundary precision and recall, compactness. However previous methods only generate superpixels a special color space but lack researches on superpixel characteristics. Therefore we present superpixel characteristics based on SLIC as known popular. In this paper, Lab, Luv, LCH, HSV, YIQ and RGB color feature spaces are used. Uniformity, compactness, boundary precision and recall are measured for comparing characteristics of superpixel. For computer simulation, Berkeley image database(BSD300) is used and Lab color space is superior to the others by the experimental results.

칼라특징공간별 슈퍼픽셀의 특성비교 (A Comparison of Superpixel Characteristics for Color Feature Spaces)

  • 이정환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.915-917
    • /
    • 2011
  • 본 논문에서는 칼라특징공간별로 슈퍼픽셀의 특성을 비교하였다. 슈퍼픽셀은 특성이 비슷한 인접 화소들을 묶어서 하나의 큰 화소로 취급하는 것으로 고속영상처리 및 인식을 위해 사용한다. 본 연구에서는 칼라특징공간별로 슈퍼픽셀을 구하여 각각의 특징을 비교하고자 한다. 비교할 특징은 슈퍼 픽셀의 중요한 특징인 밀집성(compactness)사용한다. 실험에 사용한 영상은 버클리대학교의 영상분할 데이터베이스인 BSD-300영상을 사용하여 실험하였다.

  • PDF

슈퍼픽셀의 밀집도 및 텍스처정보를 이용한 DBSCAN기반 칼라영상분할 (A Method of Color Image Segmentation Based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) Using Compactness of Superpixels and Texture Information)

  • 이정환
    • 디지털산업정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.89-97
    • /
    • 2015
  • In this paper, a method of color image segmentation based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) using compactness of superpixels and texture information is presented. The DBSCAN algorithm can generate clusters in large data sets by looking at the local density of data samples, using only two input parameters which called minimum number of data and distance of neighborhood data. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. Each superpixel is consist of pixels with similar features such as luminance, color, textures etc. Superpixels are more efficient than pixels in case of large scale image processing. In this paper, superpixels are generated by SLIC(simple linear iterative clustering) as known popular. Superpixel characteristics are described by compactness, uniformity, boundary precision and recall. The compactness is important features to depict superpixel characteristics. Each superpixel is represented by Lab color spaces, compactness and texture information. DBSCAN clustering method applied to these feature spaces to segment a color image. To evaluate the performance of the proposed method, computer simulation is carried out to several outdoor images. The experimental results show that the proposed algorithm can provide good segmentation results on various images.

슈퍼픽셀특성을 이용한 칼라영상분할 (Color Image Segmentation Using Characteristics of Superpixels)

  • 이정환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.649-651
    • /
    • 2012
  • 본 논문에서는 슈퍼픽셀특성을 이용한 칼라영상분할을 연구한다. 슈퍼픽셀은 특성이 비슷한 인접화소들을 묶어서 하나의 큰 화소로 취급하는 것으로 고속영상처리 및 영상인식을 위해 사용될 수 있다. 본 연구에서는 슈퍼픽셀특성이 비교적 우수한 $La^*b^*$ 칼라특징공간에서 슈퍼픽셀을 구하고 클러스터링 및 기울기기반 분할 알고리즘을 적용한 영상분할을 연구한다.

  • PDF

Efficient Superpixel Generation Method Based on Image Complexity

  • Park, Sanghyun
    • Journal of Multimedia Information System
    • /
    • 제7권3호
    • /
    • pp.197-204
    • /
    • 2020
  • Superpixel methods are widely used in the preprocessing stage as a method to reduce computational complexity by simplifying images while maintaining the characteristics of the images in the computer vision applications. It is common to generate superpixels of similar size and shape based on the pixel values rather than considering the characteristics of the image. In this paper, we propose a method to control the sizes and shapes of generated superpixels, considering the contents of an image. The proposed method consists of two steps. The first step is to over-segment an image so that the boundary information of the image is well preserved. In the second step, generated superpixels are merged based on similarity to produce the target number of superpixels, where the shapes of superpixels are controlled by limiting the maximum size and the proposed roundness metric. Experimental results show that the proposed method preserves the boundaries of the objects in an image more accurately than the existing method.

영상의 복잡도를 고려한 슈퍼픽셀 분할 방법 (Superpixel Segmentation Scheme Using Image Complexity)

  • 박상현
    • 한국정보기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.85-92
    • /
    • 2018
  • 복잡한 영상처리 알고리즘을 사용할 때 계산량을 줄이기 위해 슈퍼픽셀을 사용한다. 슈퍼픽셀은 특성이 유사한 픽셀들을 군집화하여 하나의 그룹으로 만드는 방법이다. 슈퍼픽셀은 영상처리의 전단계로 사용되기 때문에 빠르게 생성할 수 있어야 하고 영상의 에지 성분들을 잘 보존하여야 한다. 본 논문에서는 에지 성분을 잘 보존하면서도 계산량이 많지 않은 슈퍼픽셀 생성 방법을 제안한다. 제안하는 방법에서는 먼저 기존의 k-mean 방법을 이용하여 영상의 슈퍼픽셀을 충분히 생성하고, 생성된 슈퍼픽셀들을 분석하여 유사한 슈퍼픽셀을 병합하는 방식으로 최종 슈퍼픽셀을 생성한다. 슈퍼픽셀을 병합할 때는 슈퍼픽셀에 대해서만 유사도를 측정하기 때문에 추가되는 계산량은 많지 않다. 실험 결과는 제안하는 방법으로 생성된 슈퍼픽셀이 기존 방법에 의해 생성된 슈퍼픽셀에 비해 보다 정확하게 에지 성분들을 보존하는 것을 보여준다.

효율적인 그래프 기반 2단계 슈퍼픽셀 생성 방법 (Efficient graph-based two-stage superpixel generation method)

  • 박상현
    • 한국정보통신학회논문지
    • /
    • 제23권12호
    • /
    • pp.1520-1527
    • /
    • 2019
  • 컴퓨터 비전 분야에서 영상의 특성을 유지하면서 영상을 간소화하여 계산량을 줄이는 방법으로 전처리 단계에서 슈퍼픽셀 방법이 많이 사용되고 있다. 하지만 슈퍼픽셀 단계에서는 영상의 특성을 고려하는 것 보다는 화소의 값을 기준으로 일정한 크기와 형태의 슈퍼픽셀을 생성하는 것이 일반적이다. 본 논문에서는 응용에 맞게 영상의 특성을 고려하여 슈퍼픽셀을 생성할 수 있는 방법을 제안한다. 제안하는 방법은 두 단계로 이루어지며, 첫 번째 단계에서 영상을 과분할 하여 영상의 경계 정보들이 잘 보존되게 한다. 두 번째 단계에서는 과분할 된 슈퍼픽셀들을 유사도를 기준으로 병합하여 원하는 개수의 슈퍼픽셀을 생성한다. 이때 슈퍼픽셀의 최대 크기를 제한함으로써 슈퍼픽셀의 형태를 제어한다. 실험 결과는 제안하는 방법으로 생성된 슈퍼픽셀이 기존 방법에 의해 생성된 슈퍼픽셀 보다 정확하게 경계 정보를 보존하는 것을 보여준다.

현미경 영상 기반 암세포 생존력 관련 표현형 추출 (Microscopic Image-based Cancer Cell Viability-related Phenotype Extraction)

  • 강미선
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권3호
    • /
    • pp.176-181
    • /
    • 2023
  • During cancer treatment, the patient's response to drugs appears differently at the cellular level. In this paper, an image-based cell phenotypic feature quantification and key feature selection method are presented to predict the response of patient-derived cancer cells to a specific drug. In order to analyze the viability characteristics of cancer cells, high-definition microscope images in which cell nuclei are fluorescently stained are used, and individual-level cell analysis is performed. To this end, first, image stitching is performed for analysis of the same environment in units of the well plates, and uneven brightness due to the effects of illumination is adjusted based on the histogram. In order to automatically segment only the cell nucleus region, which is the region of interest, from the improved image, a superpixel-based segmentation technique is applied using the fluorescence expression level and morphological information. After extracting 242 types of features from the image through the segmented cell region information, only the features related to cell viability are selected through the ReliefF algorithm. The proposed method can be applied to cell image-based phenotypic screening to determine a patient's response to a drug.

슈퍼픽셀과 FCM을 이용한 클러스터 초기값 설정 및 칼라영상분할 (A Setting of Initial Cluster Centers and Color Image Segmentation Using Superpixels and Fuzzy C-means(FCM) Algorithm)

  • 이정환
    • 한국멀티미디어학회논문지
    • /
    • 제15권6호
    • /
    • pp.761-769
    • /
    • 2012
  • 본 논문에서는 슈퍼픽셀과 FCM을 이용한 클러스터 초기값 설정방법과 이를 사용한 칼라영상분할을 연구한다. 클러스터링을 이용한 대표적인 칼라영상분할 방법으로 Fuzzy C-menas (FCM) 알고리즘을 많이 사용한다. FCM은 하나의 데이터가 각 클러스터에 서로 다른 소속도를 갖도록 한다. 그러나 FCM은 초기값 설정에 따라 국부적인 수렴문제가 발생한다. 따라서 초기값 설정문제는 매우 중요한데 본 연구에서는 슈퍼픽셀을 이용하여 클러스터의 초기값을 구하는 방법을 제안한다. 슈퍼픽셀은 원 영상에서 특성이 비슷한 화소들의 묶음으로 표현되는데 먼저 원 영상으로부터 슈퍼픽셀을 구하고 이를 $La^*b^*$ 칼라특징공간에 투영하여 클러스터 초기값을 구한다. 제안방법에서 슈퍼픽셀의 수는 원영상의 화소 수보다 일반적으로 매우 적어서 클러스터 초기값 설정을 위한 고속처리가 가능하다. 제안된 알고리즘의 성능평가를 위해 다양한 칼라영상을 사용하여 컴퓨터 모의실험을 수행하였으며 실험결과 제안방법이 기존방법에 비해 영상분할 성능이 우수함을 알 수 있었다.