• Title/Summary/Keyword: Superoxide radical(O2-·)

Search Result 301, Processing Time 0.023 seconds

Scavenging Effects of Tea Catechins on Superoxide and Hydroxy Radical

  • Park, Jaeil;Chen, Liuji;Yang, Xianqiang;Shen, Shengrong;Wang, Yuefei;Ho, Ryu-Beung
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.75-79
    • /
    • 2002
  • Tea catechins, the most important compounds in tea polyphenols, can efficiently scavenge superoxide anion free-radical ($O_2$.), hydroxyl radical. (.OH) The mechanism of scavenging active oxygen free radicals was investigated by ESR spin trapping technique and Chemiluminescence. Results showed that various tea catechins constitute an antioxidant cycle in accordance with the decreasing order of the first reductive potential, and produce the effect of cooperative strength each other. Esterificated catechins could scavenge active oxygen free radicals more effectively than the non-esterificated ones. When.OH and $O_2$.- were scavenged by (-)-epigallocatechin gallate [(-)- EGCG], the stoichiometric factors were 6, and the rate constants of scavenging reaction reached $7.71{\times}10^6$ and $3.52{\times}10^{11}$ L $mmol^{-1}s^{-1}$, respectively. In the mean time, tea catechins could scavenge superoxide anion fiee radical ($O_2$-.) and hydroxyl radical (.OH) in a dose dependent manner. But at higher concentration or pH value, tea catechins can induce the prooxidant.

  • PDF

The Rate of Superoxide Radical (${O_2}^-$.) Production in Normal Fenton's Reagent at Different pHs (펜톤반응에서 pH의 변화에 따른 superoxide radical (${O_2}^-$.)의 생성)

  • 김용수;공성호;김재호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.73-81
    • /
    • 2002
  • In normal Fenton's reagent, the reductive mechanism of carbon tetrachloride (CT) with superoxide radical (${O_2}^-$.) was observed and the rate of ${O_2}^-$. production was investigated as a function of $H_2O$$_2$ concentration and pH. As pH was increased, the rate of 1-hexanol degradation was rapidly decreased from 90% (at pH 3) to 5% (at pH 11). On the other hand, more degradation of carbon tetrachloride was observed at higher pH regimes indicating Fenton's reaction is an oxidant-reductant co-existing system at neutral pHs. The rate of $O_2^{-}$ . production was observed at different $H_2$$O_2$ concentrations and at different pHs. The rate increased from (45.3$\pm$7.8) x $10^{-6}$ M/s to (151.0$\pm$26.2) x $10^{-6}$ M/s ($294mM H_2$$O_2$) at pH 11: the rate 3150 increased from (22.1$\pm$3.8) x $10^{-6}$ M/s at pH 7 to (151.0$\pm$26.2) x $^10{-6}$ M/s at pH 11 with 294mM $H_2$$O_2$, These results showed that Fenton's reagent could be applied at wide pH regimes. Especially, carbon tetrachloride, which can not be easily adsorbed to soils and then can be dissolved into groundwater causing a cancer, could be efficiently treated by Fenton's reagent.reagent.

The involvement of oxygen free radicals in the onset of aging (노화에 미치는 산소 유리라디칼에 관한 연구동향)

  • Kim, Jung-Sang;Na, Chang-Su;Kim, Young-Kon
    • Korean Journal of Oriental Medicine
    • /
    • v.3 no.1
    • /
    • pp.229-239
    • /
    • 1997
  • The superoxide anion radical$(O_2)$ poses a threat to macromocules and cell organelles of the living cells. This toxicity damage to all groups of proteins results in loss of enzyme function concerned with metabolism and ion transport, and peroxidation of unsaturated fatty acids and cholesterol results in a change of permeability characteristics of the membrane, and oxidative of nucleic acids results in genomic damage and thereby cause mutation, potential carcinogenesis and somatic damage that produce cellular aging Superoxide dismutase(SOD) has received substantial attention as a potential therapeutic agent. It has been investigated as a possible agent for the prevention of ontogenesis, the reduction of cytotoxic effect of anticancer drugs, and protection against damage in ischemic tissue. It is suggest that $O_2$ is concerned with cellular aging, thereafter we need to investigate herb that activated to SOD.

  • PDF

Inhibitory Effect of Spermidine with Antioxidant Activity on Oxidative Stress in Human Dermal Fibroblasts (사람피부섬유아세포에서 산화적 스트레스에 대한 항산화 활성을 가진 spermidine의 억제효과)

  • Park, In-Hwan;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.693-699
    • /
    • 2011
  • Spermidine is a ubiquitous polycation that is synthesized from putrescine, which serves as a precursor of spermine. In recent years, spermidine was found to be a polyamine that plays an important role in longevity. Reactive oxygen species (ROS) such as hydroxyl radical, superoxide and hydrogen peroxide have been shown to be involved in various pathogenic processes as well as aging. The direct scavenging effect of spermidine on DPPH radical, $H_2O_2$ and hydroxyl radical, and its protective effect against DNA oxidation related to oxidative stress were evaluated in vitro. It was observed that spermidine exhibits scavenging activities on DPPH radical and H2O2 above 500 ${\mu}M$. Spermidine was especially effective in exerting a scavenging activity on hydroxyl radical. In addition, spermidine at 1000 ${\mu}M$ showed a clear protective effect against DNA oxidation. Furthermore, the expression level of anti-oxidant enzymes such as superoxide dismutase in humam dermal fibroblasts increased in the presence of spermidine compared with blank group. These results suggest that spermidine can be used as an antioxidant to prevent ROS-related diseases including inflammation, cancer and aging.

Antioxidant Properties of Flavone-6(4')-Carboxaldehyde Oxime Ether Derivatives

  • Gulgun, Ayhan-Kilcigil;Coban, Tulay;Tuncbilek, Meral;Benay, Can-Eke;Oya, Bozda-Dundar;Ertan, Rahmiye;Iscan, Mumtaz
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.610-614
    • /
    • 2004
  • The in vitro antioxidant properties of some flavone-6(4)-carboxaldehyde oxime ether deriva-tives (Ia-f, lIa-f) were determined by their effects on the rat liver microsomal NADPH-dependent lipid peroxidation (LP) levels by measuring the formation of 2-thiobarbituric acid reactive substances. The free radical scavenging properties of the compounds were also examined in vitro by determining their capacity to scavenge superoxide anions and interact with the stable free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH). The most active compounds, lib (Flavone-4'-carboxaldehyde-O-ethyl oxime) and Id (Flavone-6-carboxaldehyde-O-[2-(1-pyrolidino) ethyl] oxime), caused 98 and 79% inhibition of superoxide anion production and DPPH stable free radical at $10^{-3}{\;}M$, respectively.

Structural Characterization of a Flavonoid Compound Scavenging Superoxide Anion Radical Isolated from Capsella bursa-pastoris

  • Kweon, Mee-Hyang;Kwak, Jae-Hyock;Ra, Kyung-Soo;Sung, Ha-Chin;Yang, Han-Chul
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.423-428
    • /
    • 1996
  • A superoxide anion radical scavenger isolated from Capsella bursa-pastoris was characterized by infrared (IR) spectroscopy, sugar analysis, ultraviolet (UV) spectroscopy, $^{1}H$ and $^{13}C$ nuclear magnetic resonance (NMR) spectroscopies, and fast atom bombardment (FAB) mass analysis. The compound was assumed to be a flavonoid-O-glycoside from IR spectrum and UV absorption maxima. When the sugar composition of the compound was examined by thin layer chromatography (TLC) and gas chromatography (GC) of the acid hydrolysate, only glucose was detected. According to the results of UV spectrotroscopy by using shift reagents, the compound was supposed to be luteolin (5,7,3',4'-tetrahydroxy flavone) or chrysoeriol (5,7,4'-trihydroxy-3'-methoxy flavone) with glucose. Based on $^{1}H$- and $^{13}C-NMR$ spectroscopies, the compound was deduced as 7,4'-dihydroxy-5,3'-dimethoxy-${\alpha}$-6-c-glucosyl-${\beta}$-2"-o-glucosyl flavone. In FAB mass analysis the compound was finally characterized as 7,4'-dihydroxy-5,3'-dimethoxy-${\alpha}$-6-c-glucosyl-${\beta}$-2"-o-glucosyl flavone ($C_{29}H_{34}O_{16}$, M.W.=638).

  • PDF

Generation of Superoxide Radical from Rat Brain Mitochondria and Mechanism of Its Toxic Action to Mitochondrial and Extra-mitochondrial Components (흰쥐 뇌 미토콘드리아에 의한 superoxide radical의 생성과 이 radical이 미토콘드리아 및 미토콘드리아 외 물질에 대한 독작용과 그 기전에 관한 연구)

  • Roh, Jae-Kyu;Pyo, Jang-Geun;Chung, Myung-Hee;Lim, Jung-Kyoo;Myung, Ho-Jin
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.12-26
    • /
    • 1985
  • The generation of $O^{-}_{2}{\cdot}$ and its toxic effects were studied with rat brain mitochondria. The production of $O^{-}_{2}{\cdot}$ from mitochondria in the presence of succinate and antimycin was demonstrated by SOD-inhibitable reduction of NBT. Although succinate can support the $O^{-}_{2}{\cdot}$ formation, the highest rate needs antimycin indicating that blockade of electron flow in the respiratory chain augments the univalent reduction of molecular oxygen. Under this condition, $H_2O_2$ was also observed to be produced. But its formation appears to be derived from the dismutation of the primary product, $O^{-}_{2}{\cdot}$ since the rate of $H_2O_2$ production was markedly decreased by NBT and ferricytochrome c. The $O^{-}_{2}{\cdot}$ and $H_2O_2$ produced were able to cause toxic actions to mitochondrial and extra-mitochondrial components as shown by lipid peroxidation of mitochondrial membrane, and inactivation and lysis of isocitrate dehydrogenase and erythrocytes added to the medium, respectively. In all the toxic actions observed, $Fe^{++}$ was required. It appears that in the toxic actions $OH{\cdot}$ generated from the iron-catalyzed Haber-Weiss reaction acts as a mediator. This was supported by the finding that mitochondria in the presence of succinate and antimycin produced ethylene from methional, and $Fe^{++}$ added increased the ethylene production. The observed toxic actions of mitochondrial $O^{-}_{2}{\cdot}$ may provide evidence supporting a potential role of mitochondria as a source of oxygen radicals to cause tissue damage.

  • PDF

Antioxidant Components of the Aerial Parts of Bidens frondosa L. (미국가막사리 지상부의 항산화 성분)

  • Ahn, Dalrae;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.110-116
    • /
    • 2016
  • As a part of an ongoing search for natural plants with antioxidant compounds by measuring the radical scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH), a total extract of the aerial parts of Bidens frondosa L. (Compositae) was found to show potent antioxidant activity. Subsequent activity-guided fractionation of the methanolic extract led to the isolation of five compounds, quercetin-3-O-${\beta}$-D-glucopyranoside (1), luteolin-7-O-${\beta}$-D-glucopyranoside (2), 7,8,3',4'-tertrahydroxy-flavanone (3), okanin-4-O-${\beta}$-D-glucopyranoside (4), and okanin (5). Their structures were elucidated by spectroscopic studies. Compounds 3-5 were isolated for the first time from this plant. Among them, compounds 3 and 5 showed the significant radical scavenging effects on DPPH, and compounds 3 and 5 also showed the potent riboflavin and xanthine originated superoxide quenching activities.

Antioxidative and Free Radical Scavenging Activity of Water Extract From Dandelion (Taruaxacum officinale) (민들레 물추출물의 항산화 및 자유라디칼 소거활성)

  • 강미정;신승렬;김광수
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.253-259
    • /
    • 2002
  • The antioxidative and free radical scavenging activity of water extracts of dandelion were investigated. Antioxidative and radical scavenging activity were assessed by means of different tests; inhibition of peroxidation on linoleic acid model system, scavenging DPPH radical, scavenging of hydroxyl radical by chemiluminescence assay, scavenging of superoxide anion radical by EPR spectroscopy and scavenging of hydrogen peroxide. The leaf extract showed strong antioxidant activity in linoleic acid system. The antioxidant activity of water extracts of dandelion increased with increasing concentrations of extracts. The scavenging activity of the dandelion extracts, on inhibition of the DPPH radical, was related to the reaction time. Hydroxyl radical were generated by lenten reaction and dandelion extract was found to scavenge OH˙in a concentration-dependent manner. The water extract of leaf had effective scavenging activities on hydrogen peroxide and superoxide anion radical. From the these data, it is evident that water extract of dandelion leaf is an effective scavenger for OH˙, O$_2$¨, DPPH˙, hydrogen peroxide. And, the antioxidative effect observed is believed to be partly due to this radical scavenger activity.

Determination of Hydroperoxyl/superoxide Anion Radical (HO2·/O2·-) Concentration in the Decomposition of Ozone Using a Kinetic Method

  • Kwon, Bum-Gun;Lee, Jai H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1785-1790
    • /
    • 2006
  • A novel kinetic method for determination of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition in water is described. In this study, potential interferences of $O_3$ and the hydroxyl radicals, $^{\cdot}OH_{(O3)}$, are suppressed by $HSO_3{^-}/SO_3{^{2-}}$. $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ formed in ozone decomposition reduces $Fe^{3+}$-EDTA into $Fe^{2+}$-EDTA and subsequently the well-known Fenton-like (FL) reaction of $H_2O_2$ and $Fe^{2+}$-EDTA produces the hydroxyl radicals, $^{\cdot}OH_{(FL)}$. Benzoic acid (BA) scavenges $^{\cdot}OH_{(FL)}$ to produce OHBA, which are analyzed by fluorescence detection (${\lambda}_{ex}=320nm$ and ${\lambda}_{ex}=400nm$). The concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition has been determined by the novel kinetic method using the experimentally determined half-life ($t_{1/2}$). The steady-state concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ is proportional to the $O_3$ concentration at a given pH. However, the steady-state concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition is inversely proportional to pH values. This pH dependence is due to significant loss of $O_2{^{{\cdot}-}}$ by $O_3$ at higher pH conditions. The steady-state concentrations of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ are in the range of $2.49({\pm}0.10){\times}10^{-9}M(pH=4.17){\sim}3.01({\pm}0.07){\times}10^{-10}M(pH=7.59)$ at $[O_3]_o=60{\mu}M$.