• Title/Summary/Keyword: Superlattice film

Search Result 21, Processing Time 0.025 seconds

Design and Fabrication Optical Interference Filters using Multiple and Inhomogeneous Dielectric Layers (다층 및 불균일 SiON 박막을 이용한 광간섭필터의 설계 및 제작)

  • Lim, Sung kyoo
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.44-51
    • /
    • 1995
  • Homogeneous, compositionally graded, and superlattice-like silicon oxynitride(SiON) dielectric layers, with the refractive index varying from 1.46 to 2.05 as a function of film thickness, were grown by computer-controlled plasma-enhanced chemical vapor deposition (PECVD) using silane, nitrogen, and nitrous oxide reactant gases. An antireflection(AR) coating and thin-film electroluminescent(TFEL) devices with multiple dielectrics were designed and fabricated using real time control of reactant gases of the PECVD system.

  • PDF

Organic-Inorganic Hybrid Thin Film Fabrication as Encapsulation using TMA and Adipoyl Chloride

  • Kim, Se-Jun;Han, Gyu-Seok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.395-395
    • /
    • 2012
  • We fabricate organic-inorganic hybrid thin film for the purpose of encapsulation by molecular layer deposition (MLD) using Trimethylaluminium (TMA) and Adipoyl Chloride (AC). Ellipsometry was employed to verify self limiting reaction of ALD. Linear relationship between number of cycle and thickness was obtained. We found that desirable organic thin film fabrication is possible by MLD surface reaction in nanoscale. Purging was carried out after dosing of each precursor to form monolayer in each sequence. We also confirmed roughness of the organic thin film by atomic force microscopy. We deposit TMA and AC at $70^{\circ}C$ and that 1.78A root mean square was obtained which indicates that uniform organic thin film was formed. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates superlattice film can be possibly use as encapsulation in flexible devices.

  • PDF

Structural, Optical properties of layer thickness dependence for silicon quantum dots in SiC matrix superlattice (실리콘 양자점 초격자 박막의 두께에 따른 구조적, 광학적 특성 분석)

  • Kim, Hyun-Jong;Moon, Ji-Hyun;Park, Sang-Hyun;Cho, Jun-Sik;Yoon, Kyung-Hoon;Song, Jin-Soo;O, Byung-Sung;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.398-398
    • /
    • 2009
  • 텐덤 구조의 양자점 태양전지에서 양자점의 크기에 따라 에너지 밴드갭이 달라 넓은 대역의 태양광을 이용할 수 있다. 이러한 양자점의 크기는 증착 두께의 제어로 조절이 가능하다. Si과 C target을 이용한 RF Co-sputtering 법으로 각각 증착시간을 다르게 하여, SiC/$Si_{1-x}C_x$(x~0.20)인 실리콘 양자점 초격자 박막을 제조하고, $1000^{\circ}C$에서 20분간 질소 분위기에서 열처리를 하였다. Grazing incident X-ray diffraction(GIXRD)를 통해서 Si(111)과 $\beta$-SiC (111)이 생성되었음을 확인하였고, High resolution transmission electron microscopy(HRTEM) 사진으로 양자점의 크기와 분포 밀도를 확인할 수 있었다. Photoluminescence(PL)에서 1.4, 1.5, 1.7, 1.9eV의 Peak이 확인되었다.

  • PDF

Nanophotonics of Hexagonal Lattice GaN Crystals Fabricated using an Electron Beam Nanolithography Process

  • Lee, In-Goo;Kim, Keun-Joo;Jeon, Sang-Cheol;Kim, Jin-Soo;Lee, Hee-Mok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.14-17
    • /
    • 2006
  • A thin GaN semiconducting film that grows on sapphires due to metalorganic chemical vapor deposition was machined for nanophotonic applications. The thin film had multilayered superlattice structures, including nanoscaled InGaN layers. Eight alternating InGaN/GaN multilayers provided a blue light emission source. Nanoscaled holes, 150 nm in diameter, were patterned on polymethylmethacrylate (PMMA) film using an electron beam lithography system. The PMMA film blocked the etching species. Air holes, 75 nm in diameter, which acted as blue light diffraction sources, were etched on the top GaN layer by an inductively coupled plasma etcher. Hexagonal lattice photonic crystals were fabricated with 230-, 460-, 690-, and 920-nm pitches. The 450-nm wavelength blue light provided the nanodiffraction destructive and constructive interferences phenomena, which were dependent on the pitch of the holes.

Investigation of bias illumination stress in solution-processed bilayer metal-oxide thin-film transistors

  • Lee, Woobin;Eom, Jimi;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.302.1-302.1
    • /
    • 2016
  • Solution-processed amorphous metal-oxide thin-film transistors (TFTs) are considered as promising candidates for the upcoming transparent and flexible electronics due to their transparent property, good performance uniformity and possibility to fabricate at a low-temperature. In addition, solution processing metal oxide TFTs may allow non-vacuum fabrication of flexible electronic which can be more utilizable for easy and low-cost fabrication. Recently, for high-mobility oxide TFTs, multi-layered oxide channel devices have been introduced such as superlattice channel structure and heterojunction structure. However, only a few studies have been mentioned on the bias illumination stress in the multi- layered oxide TFTs. Therefore, in this research, we investigated the effects of bias illumination stress in solution-processed bilayer oxide TFTs which are fabricated by the deep ultraviolet photochemical activation process. For studying the electrical and stability characteristics, we implemented positive bias stress (PBS) and negative bias illumination stress (NBIS). Also, we studied the electrical properties such as field-effect mobility, threshold voltage ($V_T$) and subthreshold slop (SS) to understand effects of the bilayer channel structure.

  • PDF

Optimization of TEM Sample Preparation for the Microstructural Analysis of Nitride Semiconductors (질화물 반도체의 미세구조 분석을 위한 최적의 TEM 시편 준비법)

  • Cho, Hyung-Koun;Kim, Dong-Chan
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.598-605
    • /
    • 2003
  • The optimized conditions for the cross-sectional TEM sample preparation using tripod polisher and ion-beam miller was confirmed by AFM and TEM. For the TEM observation of interfaces including InGaN layers like InGaN/GaN MQW structures, the sample preparation by the only tripod polishing was useful due to the reduction of artifacts. On the other hand, in case of the thick nitride films like ELO, PE, and superlattice, both tripod polishing and controlled ion-beam milling were required to improve the reproducibility. As a result, the ion-beam milling with the $60^{\circ}$modulation showed the minimum height difference between film and sapphire interface and the ion-beam milling of the $80^{\circ}$modulation showed the broad observable width.

Nano-structure and Magnetic Properties of FePd Superlattice Thin Film (FePd 인공격자박막의 나노구조 및 자기적 특성)

  • Kang, J.G.;Chung, I.S.;Koo, J.W.;Koh, J.H.;Koo, S.M.;Nam, S.M.;Ha, J.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.190-194
    • /
    • 2008
  • Epitaxial $L1_0$ FePd (001) thin films were successfully manufactured by sputtering deposition method. The structure and magnetic properties of FePd thin films were characterized as a function of Fe compositions. It was found that the long-range ordering parameter had a maximum for the stoichiometric composition, whereas the magnetic anisotropy had a maximum as the Fe content is decreased to slightly above the stoichiometric composition. This indicates that the stoichiometry is directly contributed to the chemical ordering and the magnetic anisotropy. These results imply that nonstoichiometric FePd compositions, with a slight excess of Pd, may in fact be preferred for applications that require high magnetic anisotropy.

The Structural and Optical Properties of GaAs- SiO2 Composite Thin Films With Varying GaAs Nano-particle Size (GaAs 나노입자 크기에 따른 SiO2 혼합박막의 구조적 광학적 특성)

  • Lee, Seong-Hun;Kim, Won-Mok;Sin, Dong-Uk;Jo, Seong-Hun;Jeong, Byeong-Gi;Lee, Taek-Seong;Lee, Gyeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.296-303
    • /
    • 2002
  • For potential application to quantum mechanical devices, nano-composite thin films, consisting of GaAs quantum dots dispersed in SiO$_2$ glass matrix, were fabricated and studied in terms of structural, chemical, and optical properties. In order to form crystalline GaAs quantum dots at room temperature, uniformly dispersed in $SiO_2$matrix, the composite films were made to consist of alternating layers of GaAs and $SiO_2$in the manner of a superlattice using RF magnetron sputter deposition. Among different film samples, nominal thickness of an individual GaAs layer was varied with a total GaAs volume fraction fixed. From images of High Resolution Transmission Electron Microscopy (HRTEM), the formation of GaAs quantum dots on SiO$_2$was shown to depend on GaAs nominal thickness. GaAs deposits were crystalline and GaAs compound-like chemically according to HRTEM and XPS analysis, respectively. From measurement of optical absorbance using a spectrophotometer, absorption edges were determined and compared among composite films of varying GaAs nominal thicknesses. A progressively larger shift of absorption edge was noticed toward a blue wavelength with decreasing GaAs nominal thickness, i.e. quantum dots size. Band gaps of the composite films were also determined from Tauc plots as well as from PL measurements, displaying a linear decrease with increasing GaAs nominal thickness.

Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method (마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성)

  • Park, Young-Bin;Kim, Shin-Ho;Ha, Rin;Lee, Hyun-Ju;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.586-591
    • /
    • 2010
  • Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.