• Title/Summary/Keyword: Superimposed texts

Search Result 6, Processing Time 0.016 seconds

Automatic Superimposed Text Localization from Video Using Temporal Information

  • Jung, Cheol-Kon;Kim, Joong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.834-839
    • /
    • 2007
  • The superimposed text in video brings important semantic clues into content analysis. In this paper, we present the new and fast superimposed text localization method in video segments. We detect the superimposed text by using temporal information contained in the video. To detect the superimposed text fast, we have minimized the candidate region of localizing superimposed texts by using the difference between consecutive frames. Experimental results are presented to demonstrate the good performance of the new superimposed text localization algorithm.

Automatic Name Line Detection for Person Indexing Based on Overlay Text

  • Lee, Sanghee;Ahn, Jungil;Jo, Kanghyun
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.163-170
    • /
    • 2015
  • Many overlay texts are artificially superimposed on the broadcasting videos by humans. These texts provide additional information to the audiovisual content. Especially, the overlay text in news videos contains concise and direct description of the content. Therefore, it is most reliable clue for constructing a news video indexing system. To make the automatic person indexing of interview video in the TV news program, this paper proposes the method to only detect the name text line among the whole overlay texts in one frame. The experimental results on Korean television news videos show that the proposed framework efficiently detects the overlaid name text line.

Comparison of Text Beginning Frame Detection Methods in News Video Sequences (뉴스 비디오 시퀀스에서 텍스트 시작 프레임 검출 방법의 비교)

  • Lee, Sanghee;Ahn, Jungil;Jo, Kanghyun
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.307-318
    • /
    • 2016
  • 비디오 프레임 내의 오버레이 텍스트는 음성과 시각적 내용에 부가적인 정보를 제공한다. 특히, 뉴스 비디오에서 이 텍스트는 비디오 영상 내용을 압축적이고 직접적인 설명을 한다. 그러므로 뉴스 비디오 색인 시스템을 만드는데 있어서 가장 신뢰할 수 있는 실마리이다. 텔레비전 뉴스 프로그램의 색인 시스템을 만들기 위해서는 텍스트를 검출하고 인식하는 것이 중요하다. 이 논문은 뉴스 비디오에서 오버레이 텍스트를 검출하고 인식하는데 도움이 되는 오버레이 텍스트 시작 프레임 식별을 제안한다. 비디오 시퀀스의 모든 프레임이 오버레이 텍스트를 포함하는 것이 아니기 때문에, 모든 프레임에서 오버레이 텍스트의 추출은 불필요하고 시간 낭비다. 그러므로 오버레이 텍스트를 포함하고 있는 프레임에만 초점을 맞춤으로써 오버레이 텍스트 검출의 정확도를 개선할 수 있다. 텍스트 시작 프레임 식별 방법에 대한 비교 실험을 뉴스 비디오에 대해서 실시하고, 적절한 처리 방법을 제안한다.

Arabic Words Extraction and Character Recognition from Picturesque Image Macros with Enhanced VGG-16 based Model Functionality Using Neural Networks

  • Ayed Ahmad Hamdan Al-Radaideh;Mohd Shafry bin Mohd Rahim;Wad Ghaban;Majdi Bsoul;Shahid Kamal;Naveed Abbas
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1807-1822
    • /
    • 2023
  • Innovation and rapid increased functionality in user friendly smartphones has encouraged shutterbugs to have picturesque image macros while in work environment or during travel. Formal signboards are placed with marketing objectives and are enriched with text for attracting people. Extracting and recognition of the text from natural images is an emerging research issue and needs consideration. When compared to conventional optical character recognition (OCR), the complex background, implicit noise, lighting, and orientation of these scenic text photos make this problem more difficult. Arabic language text scene extraction and recognition adds a number of complications and difficulties. The method described in this paper uses a two-phase methodology to extract Arabic text and word boundaries awareness from scenic images with varying text orientations. The first stage uses a convolution autoencoder, and the second uses Arabic Character Segmentation (ACS), which is followed by traditional two-layer neural networks for recognition. This study presents the way that how can an Arabic training and synthetic dataset be created for exemplify the superimposed text in different scene images. For this purpose a dataset of size 10K of cropped images has been created in the detection phase wherein Arabic text was found and 127k Arabic character dataset for the recognition phase. The phase-1 labels were generated from an Arabic corpus of quotes and sentences, which consists of 15kquotes and sentences. This study ensures that Arabic Word Awareness Region Detection (AWARD) approach with high flexibility in identifying complex Arabic text scene images, such as texts that are arbitrarily oriented, curved, or deformed, is used to detect these texts. Our research after experimentations shows that the system has a 91.8% word segmentation accuracy and a 94.2% character recognition accuracy. We believe in the future that the researchers will excel in the field of image processing while treating text images to improve or reduce noise by processing scene images in any language by enhancing the functionality of VGG-16 based model using Neural Networks.

Automatic Text Extraction from News Video using Morphology and Text Shape (형태학과 문자의 모양을 이용한 뉴스 비디오에서의 자동 문자 추출)

  • Jang, In-Young;Ko, Byoung-Chul;Kim, Kil-Cheon;Byun, Hye-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.479-488
    • /
    • 2002
  • In recent years the amount of digital video used has risen dramatically to keep pace with the increasing use of the Internet and consequently an automated method is needed for indexing digital video databases. Textual information, both superimposed and embedded scene texts, appearing in a digital video can be a crucial clue for helping the video indexing. In this paper, a new method is presented to extract both superimposed and embedded scene texts in a freeze-frame of news video. The algorithm is summarized in the following three steps. For the first step, a color image is converted into a gray-level image and applies contrast stretching to enhance the contrast of the input image. Then, a modified local adaptive thresholding is applied to the contrast-stretched image. The second step is divided into three processes: eliminating text-like components by applying erosion, dilation, and (OpenClose+CloseOpen)/2 morphological operations, maintaining text components using (OpenClose+CloseOpen)/2 operation with a new Geo-correction method, and subtracting two result images for eliminating false-positive components further. In the third filtering step, the characteristics of each component such as the ratio of the number of pixels in each candidate component to the number of its boundary pixels and the ratio of the minor to the major axis of each bounding box are used. Acceptable results have been obtained using the proposed method on 300 news images with a recognition rate of 93.6%. Also, my method indicates a good performance on all the various kinds of images by adjusting the size of the structuring element.

Text Region Extraction from Videos using the Harris Corner Detector (해리스 코너 검출기를 이용한 비디오 자막 영역 추출)

  • Kim, Won-Jun;Kim, Chang-Ick
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.646-654
    • /
    • 2007
  • In recent years, the use of text inserted into TV contents has grown to provide viewers with better visual understanding. In this paper, video text is defined as superimposed text region located of the bottom of video. Video text extraction is the first step for video information retrieval and video indexing. Most of video text detection and extraction methods in the previous work are based on text color, contrast between text and background, edge, character filter, and so on. However, the video text extraction has big problems due to low resolution of video and complex background. To solve these problems, we propose a method to extract text from videos using the Harris corner detector. The proposed algorithm consists of four steps: corer map generation using the Harris corner detector, extraction of text candidates considering density of comers, text region determination using labeling, and post-processing. The proposed algorithm is language independent and can be applied to texts with various colors. Text region update between frames is also exploited to reduce the processing time. Experiments are performed on diverse videos to confirm the efficiency of the proposed method.