• Title/Summary/Keyword: Superheating

Search Result 63, Processing Time 0.021 seconds

Performance Analysis of a Carbon Dioxide(R744) Two-Stage Compression and One-Stage Expansion Refrigeration Cycle ($CO_2$용 2단압축 1단팽창 냉동 사이클의 성능 분석)

  • Roh, G.S.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.70-75
    • /
    • 2009
  • In this paper, cycle performance analysis of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature in the carbon dioxide two-stage refrigeration cycle. The main results were summarized as follows : The cooling capacity of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, compressor efficiency and gas cooling pressure, but decreases with the increasing mass flowrate ratio and evaporating temperature. The compression work of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, outlet temperature of gas cooler, gas cooling pressure and evaporating temperature, but decreases with the increasing compressor efficiency and mass flowrate ratio. The COP of two-stage compression and one-stage expansion refrigeration system increases with the increasing compressor efficiency, but decreases with the increasing superheating degree, gas cooling pressure, mass flowrate ratio and evaporating temperature. Therefore, superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system have an effect on the cooling capacity, compressor work and COP of this system.

  • PDF

Performance Characteristics of R744 OTEC Power Cycle with Operation Parameters (운전조건에 따른 R744용 해양온도차 발전 사이클의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Baek, Seung-Moon;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.580-585
    • /
    • 2012
  • In this paper, the cycle performance analysis for condensation and evaporation capacity, total work and efficiency of ocean thermal energy conversion power system using R744 ($CO_2$) is presented to offer the basic design data for the operating parameters of this system. The operating parameters considered in this study include superheating and subcooling degree, evaporation and condensation temperature, pump and turbine efficiency. The main results were summarized as follows : The evaporation capacity of R744 increases with superheating and subcooling degree, but decreases with the increasing condensation temperature. The total work increases with superheating and subcooling degree of R744, but decreases with the increasing evaporating temperature. And, the efficiency increases with subcooling and superheating degree, but decreases with the increasing condensation temperature. Therefore, superheating and subcooling degree, evaporation and condensation temperature and pump and turbine efficiency of R744 OTEC power system have an effect on the evaporation and condensation capacity, total work and efficiency of this system. With a thorough grasp of these effect, it is necessary to design the OTEC power cycle using R744.

Performance Analysis of R744(Carbon Dioxide) for Transcritical Refrigeration System (R744용 초임계 냉동사이클의 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2009
  • In this paper, cycle performance analysis for cooling capacity, compression work and COP of R744($CO_2$) transcritical vapor compression refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : The cooling capacity of R744 increases with superheating degree, but decreases with the increasing evaporating temperature and outlet temperature of gas cooler. The compression work increases with superheating degree and cooling pressure of R744, but decreases with the increasing evaporating temperature. And, The COP increases with outlet temperature and evaporating temperature of R744 gas cooler, but decreases with the increasing superheating degree. Therefore, superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity, compression work and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

Prediction on Maximum Performance of Cascade Refrigeration System Using R717 and R744 (R718-R744용 캐스케이드 냉동시스템의 최대 성능 예측)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2565-2571
    • /
    • 2009
  • In this paper, cycle performance analysis of cascade refrigeration system using $NH_3-CO_2$(R717-R744) is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree and condensing and evaporating temperature in the ammonia(R717) high temperature cycle and the carbon dioxide low temperature cycle. The COP of cascade refrigeration system increases with the increasing superheating degree, but decreases with the increasing subcooling degree. The COP of cascade refrigeration system increases with the increasing condensing temperature, but decreases with the increasing evaporating temperature. Therefore, superheating and subcoolng degree, evaporating and condensing temperature of cascade refrigeration system using $NH_3-CO_2$ have an effect on the COP of this system. A multilinear regression analysis was employed in terms of subcooling, superheating, evaporating, condensing, and cascade heat exchanger temperature difference in order to develop mathematical expressions for maximum COP and an optimum evaporating temperature.

A Study on Hybrid Heating System with Anti-Superheating Devices (과열방지장치가 설치된 복합열원 난방시스템에 관한 연구)

  • Park, Youn-Cheol;Ko, Gwang-Soo;Han, Yu-Ry
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.19-27
    • /
    • 2007
  • The previous study was conducted to develop an air source multi heat pump system that could be operated with the solar collector and air source heat exchangers as heat source of the system. There is a winter-sowing problems in air source multi heat pump system when the outdoor temperature goes down under freezing point. The winter-sowing problem was solved by adapting R-22 refrigerant as working fluid in the previous study. However, when the system operated at high temperature, another problems are come out such as overheating of the solar collector outlet which lead to the superheat of the compressor inlet of the heat pump system. The condition could deteriorates a compressor in some case. In this study, we installed the anti-superheating devices on the previously developed system. As results of system performance test, COP of the system with anti-superheating technique is 2.4. It is a little improved COP compare to previous study's 2.23. In the results of multi heat source heating system, during operating solar collector, COP is relatively high between $200\;W/m^2$ and $400\;W/m^2$ solar intensity. It is recommended to extend the study on performance optimization with balancing the solar collect and capacity of compressor at higher solar irradiation conditions.

Performance Analysis of Cascade Refrigeration System with Respect to Refrigerants Appling to High Temperature Cycle (고온측 냉매에 따른 이원 냉동시스템의 성능 분석)

  • Yoon, Jung-In;Jeon, Min-Ju;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.45-50
    • /
    • 2017
  • This paper presents the Coefficient of performance(COP) and mass flow ratio of cascade refrigeration system with respect to refrigerants appling to high temperature cycle. The operating parameters considered in this study include degree of superheating and subcooling, compressor efficiency, evaporating temperature, condensing temperature and internal heat exchanger effectiveness in high temperature cycle. The result of this study is as follows : The COP of cascade system increases with increasing degree of superheating and subcooling, compressor efficiency and internal heat exchanger effectiveness except increasing condensing temperature. The mass flow ratio of low and high temperature cycle increases with increasing evaporating temperature and condensing temperature, but decreases with increasing internal heat exchanger effectiveness, degree of superheating and subcooling. Also, the mass flow ratio has no correlation with compressor efficiency at high temperature cycle.

Performance Characteristics of a Cascade Refrigeration System with Internal Heat Exchanger using Carbon Dioxide (R744) and Propane (R290) (내부 열교환기 부착 $CO_2-C_3H_8$용 캐스케이드 냉동시스템의 성능 특성)

  • Son, Chang-Hyo
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.6
    • /
    • pp.526-533
    • /
    • 2009
  • In this paper, cycle performance analysis of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system with internal heat exchanger is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree and gas cooling pressure and evaporating temperature in the propane (R290) low temperature cycle and the carbon dioxide (R744) high temperature cycle. The main results were summarized as follows : The COP of cascade refrigeration system of $CO_2-C_3H_8$ (R744-R290) increases with the increasing subcooling degree, but decreases with the increasing superheating degree. The COP of cascade refrigeration system increases with the increasing evaporating temperature, but decreases with the increasing gas cooling pressure. Therefore, superheating and subcooling degree, compressor efficiency, evaporating temperature and gas cooling pressure of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system have an effect on the COP of this system.

Performance Analysis of Two-stage Compression and Two-stage Expansion Refrigeration System using Freon Refrigerants (친환경 프레온 냉매를 이용하는 단압축 단팽창 냉동시스템의 성능예측)

  • Roh, Geun-Sang;Kim, Jong-Ryeol
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.2
    • /
    • pp.301-306
    • /
    • 2013
  • In this paper, cycle performance analysis of two-stage compression and two-stage expansion refrigeration system using alternative freon refrigerants is presented to offer the basic design data for the operating parameters of the system. Alternative freon refrigerant for freon refrigerant R22 were used as working fluids in this study. The operating parameters considered in this study included evaporation temperature, condensation temperature, subcooling degree, superheating degree, and mass flow rate ratio of inter-cooler. The main results were summarized as follows : The COP of two-stage compression and two-stage expansion refrigeration system increases with the increasing subcooling degree and mass flow rate ratio of inter-cooler, but decreases with the increasing evaporating temperature, condensing temperature and superheating degree. Therefore, subcooling degree, mass flow rate ratio of inter-cooler of two-stage compression and two-stage expansion refrigeration system using alternative freon refrigerants have an effect on COP of this system.

Evaporation of a Water Droplet in High-Temperature Steam

  • Ban, Chang-Hwan;Kim, Yoo
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.521-529
    • /
    • 2000
  • A modified interfacial heat transfer correlation between a dispersed water droplet and ambient superheated steam is proposed and compared with available experimental data and other correlations. Modified one overcomes the inherent deficiencies of Lee and Ryley's interfacial heat transfer correlation that ignored the effects of steam superheating which can not be neglected especially in the reflood situation of a loss-of-coolant accident. Modified one is represented by (equation omitted) In the present correlation the effect of possible subcooling of a water droplet is not taken into consideration. Comparison of the above correlation with currently available measurement data for a water droplet in high temperature gas flow shows that the proposed one correlates well with the measurement data where the degree of superheating is negligible and considerable.

  • PDF

Performance Characteristics of R134a Supercritical Heat Pump (R134a 냉매용 초임계 히트펌프의 성능 특성)

  • Choi, In-Soo
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.60-65
    • /
    • 2014
  • In this paper, cycle performance analysis for heating capacity, compression work and COP of R134a supercritical heat pump is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, pressure and outlet temperature of gas cooler, compressor efficiency and evaporating temperature in the R134a supercritical heat pump system. The main results were summarized as follows : Superheating degree, pressure and outlet temperature of gas cooler, compressor efficiency and evaporating temperature of R134a heat pump system have an effect on the heating capacity, compression work and COP of this system. With a thorough grasp of these effect, it is necessary to design the supercritical heat pump using R134a. The prediction for COP of R134a supercritical heat pump have been proposed through multiple regression analysis.