• Title/Summary/Keyword: Superheated temperature

Search Result 66, Processing Time 0.019 seconds

Condensation Heat Transfer for the R-11 Superheated Vapor with and without Noncondensable Gas (R-11의 응축열전달에 미치는 부응축가스 및 과열의 영향)

  • CHO Kwon-Ok;KUM Jong-Soo;OH HOO-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.85-93
    • /
    • 1985
  • An experimental investigation on condensing heat transfer for the Refrigerant-11 superheated vapor during condensation on the 40 mm O.D by 75 mm long horizontal tube is carried out under the various conditions of air contents as noncondensable gas, condensing pressure, and coolant temperature. The data span a refrigerant flow range from 23 to 63 kg/h and weight fractions of noncondensable gas range from 0 to $15\%$. The comparisons are made using data obtained by the authors and further data obtained from other sources. The characteristics of the condensing heat transfer of refrigerant superheated vapor with and without noncondensable gas flowing horizontally are revealed experimentally, and on the basis of the data obtained, correlations for predicting heat transfer coefficient during condensation on the tube are proposed.

  • PDF

Superheated Water-Cooled Small Modular Underwater Reactor Concept

  • Shirvan, Koroush;Kazimi, Mujid
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1338-1348
    • /
    • 2016
  • A novel fully passive small modular superheated water reactor (SWR) for underwater deployment is designed to produce 160 MWe with steam at $500^{\circ}C$ to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF). The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and then the steam, instead of exiting the reactor pressure vessel, turns around and flows downward in the central channel of some IXAF fuel rods within each assembly and then flows upward through the rest of the IXAF pins in the assembly and exits the reactor pressure vessel as superheated steam. In this study, new cladding material to withstand high temperature steam in addition to the fuel mechanical and safety behavior is investigated. The steam temperature was found to depend on the thermal and mechanical characteristics of the fuel. The SWR showed a very different transient behavior compared with a boiling water reactor. The inter-play between the inner and outer channels of the IXAF was mainly beneficial except in the case of sudden reactivity insertion transients where additional control consideration is required.

A CFD Analysis on Heat Transfer of High Temperature Steam through Interface with Superheater and SOEC for Hydrogen Production (SOEC에 과열기의 고온 스팀을 공급하는 Interface의 열전달에 관한 전산해석)

  • BYUN, HYUN SEUNG;HAN, DANBEE;PARK, SEONGRYONG;CHO, CHONGPYO;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.2
    • /
    • pp.169-176
    • /
    • 2020
  • There is a growing interest in hydrogen energy utilization since an alternative energy development has been demanded due to the depletion of fossil fuels. Hydrogen is produced by the reforming reaction of natural gas and biogas, and the electrolysis of water. An solid oxide electrolyte cell (SOEC) is reversible system that generates hydrogen by electrolyzing the superheated steam or producing the electricity from a fuel cell by hydrogen. If the water can be converted into steam by waste heat from other processes it is more efficient for high-temperature electrolysis to convert steam directly. The reasons are based upon the more favorable thermodynamic and electrochemical kinetic conditions for the reaction. In the present study, steam at over 180℃ and 3.4 bars generated from a boiler were converted into superheated steam at over 700℃ and 3 bars using a cylindrical steam superheater as well as the waste heat of the exhaust gas at 900℃ from a solid refuse fuel combustor. Superheated steam at over 700℃ was then supplied to a high-temperature SOEC to increase the hydrogen production efficiency of water electrolysis. Computational fluid dynamics (CFD) analysis was conducted on the effects of the number of 90° elbow connector for piping, insulation types and insulation layers of pipe on the exit temperature using a commercial Fluent simulator. For two pre-heater injection method of steam inlet and ceramic wool insulation of 100 mm thickness, the highest inlet temperature of SOEC was 744℃ at 5.9 bar.

Analysis of spray cone angle of air assisted flash atomization (공기보조식 (air-assisted) 플래쉬 분무의 분무 각 확대 특성 연구)

  • Yu, Tae-U;Kim, Sae-Won;Bang, Byong-Ryeol
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • When the water jets heated up to the saturation temperature at a high line pressure are sprayed into a reduced (atmospheric) pressure through an air-assisted nozzle, the jets experience sudden exposure into a reduced pressure, get superheated and produce steam bubbles while atomization processes of jets are taking place. This process is called flash atomization. In this study the flash atomization of superheated water jets assisted by air has been studied. Sprays with flash atomization have been photographed at various water and air flow rates and water superheats. It has been found that the spray angle with flash atomization increases with water superheat and water flow rate but decreases with air flow rate. The degree of change of spray angle has been analyzed and correlated as a function of superheat, air and water flow rates.

  • PDF

Laser-assisted Selective Infiltration of tow Melting-point Metal Powders (저융점 금속분말 재료의 레이저 예열 선택적 용침)

  • H. Sohn;Lee, J. H.;J. Suh;D. Y. Yang
    • Laser Solutions
    • /
    • v.7 no.1
    • /
    • pp.37-47
    • /
    • 2004
  • Laser-assisted selective infiltration is a new method of building metal layers to make metal parts layer by layer, in which superheated microscopic metal droplets are infiltrated into a laser-preheated layer of microscopic metal powders. In this work, the selective infiltration of a low melting-point metal, Sn-37Pb wt%, was conducted to investigate the effects of such dominant parameters as superheating temperature, Nd:YAG laser power for preheating, substrate temperature, etc. The optimal conditions for successful selective infiltration of a single layer of microscopic metal powder were experimentally obtained

  • PDF

Applicability of Continuous Process Using Saturated and Superheated Steam for Boxed Heart Square Timber Drying (대단면 수심정각재 건조를 위한 포화-과열증기 연속 건조 공정의 이용가능성 평가)

  • PARK, Yonggun;CHUNG, Hyunwoo;KIM, Hyunbin;YEO, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.121-135
    • /
    • 2020
  • This study aims to evaluate applicability for the continuous drying process using saturated and superheated steam for large-square timber. During drying of the boxed heart square timber, changes in moisture content were examined through the slices of the surface, inner and core layers. The results showed that there was a large moisture content difference between the surface and inner layers during saturated steam drying and between the inner and core layers during superheated steam drying. However, despite the moisture content difference between the layers, no surface check occurred, and an internal check occurred only near the pith or juvenile parts of the wood. The maximum value of the drying stress of the dried larch boxed heart square timber, calculated from the elastic strain of the slice and the tangential elastic modulus of the larch, was 1.30 MPa. The tangential tensile strength of the larch was estimated at 5.21 MPa under temperature and moisture content conditions when drying stress was at a maximum. That is, in the continuous drying process, the saturated and superheated steam did not generate a check in the surface because the drying stress of the wood did not exceed the tangential tensile strength. In further studies, the superheated steam drying conditions will need to be relaxed to suppress the occurrence of internal checks. Such studies would make the continuous drying process using saturated and superheated steam available for the drying of large-square timber.

A study of heat transfer with Phase Change Material in heat storage system - Inward freezing in the vertical cylinder - (상변화물질을 이용한 축열조에서 열전달현상에 관한 연구 - 수직원통관 내에서 응고 열전달 -)

  • Lee, C.M.;Yim, C.S.;Iqbal, M.
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.53-64
    • /
    • 1993
  • This study investigated heat transfer phenomena during the freezing of an initially superheated or non-superheated liquid in a cooled cylinder tube. Numerical and experimental method were performed to obtatin the temperature and velocity distribution, the shape of interface. Natural convection effects in the superheated liquid were confined and moderated a short freezing time. After natural convection ceases, heat conduction dominated in the whole paraffin, so Crystal and much-zone were found out in PCM. Initial superheating of liquid tended to morderatly diminish the frozen layer thickness at short freezing times but little effect on the these quantities at longer times. On the amount of frozen mass, Iintial liquid superheating is less affected than tube wall subcooling.

  • PDF

Explosive mass-removal processes during high power nanosecond Nd-YAG laser ablation of silicon (나노초 야그 레이저 어블레이션에 의한 실리콘의 폭발적 제거 현상)

  • Jeong, S.H.;Yoo, J.H.;Grief, R.;Russo, R.E.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.736-742
    • /
    • 2000
  • Mass removed from crystalline silicon samples during high power single-pulse laser ablation was studied by measuring the resulting crater morphology with a white light interferometric microscope. The volume and depth of the craters show a strong nonlinear change as the laser irradiance increases across a threshold value, that is, approximately $2.2{\times}10^{10}\;W/cm^2$. Time-resolved shadowgraph images of the ablation plume show the ejection of large particulates from the sample for laser irradiance above the threshold, with a time delay of about 300-400 nsec. The thickness of superheated liquid layer near the critical temperature was numerically estimated, considering the transformation of liquid metal into liquid dielectric near the critical state (i.e., induced transparency). The estimated thickness of the superheated layer at a delay time of 200 nsec agreed with the measured crater depths, suggesting that induced transparency promotes the formation of a deep superheated liquid layer which leads to an explosive boiling responsible for the sudden increase of crater volume and depth.

  • PDF

Comparison of the neural networks with spline interpolation in modelling superheated water (물의 과열증기 모델링에 대한 신경회로망과 스플라인법 비교)

  • Lee, Tae-Hwan;Park, Jin-Hyun;Kim, Bong-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.246-249
    • /
    • 2007
  • In numerical analysis for phase change material, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table or diagram itself cannot be used without modelling. In this study applicability of neural networks in modelling superheated vapor region of water was examined by comparing with the quadratic spline. neural network consists of an input layer with 2 nodes, two hidden layers and an output layer with 3 nodes. Quadratic spline interpoation method was also applied for comparison. Neural network model revealed smaller percentage error to quadratic spline interpolation. From these results, it is confirmed that the neural networks could be powerful method in modelling the superheated range of the steam table.

  • PDF

Comparison of the neural networks with spline interpolation in modelling superheated water (물의 과열증기 모델링에 대한 신경회로망과 스플라인 보간법 비교)

  • Lee, Tae-Hwan;Park, Jin-Hyun;Kim, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.685-690
    • /
    • 2008
  • In numerically evaluating the thermal performance of the heat exchanger, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table or diagram itself cannot be directly used without modelling. In this study the applicability of neural networks in modelling superheated water vapor was examined. The multi-layer neural networks consist of an input layer with 2 nodes, two hidden layers with 15 and 25 nodes respectively and an output layer with 3 nodes. Quadratic spline interpolation was also applied for comparison. Neural networks model revealed smaller percentage error compared with spline interpolation. From this result, it is confirmed that the neural networks could be a powerful method in modelling the superheated water vapor.