• Title/Summary/Keyword: Superficial fascia

Search Result 53, Processing Time 0.02 seconds

Development and growth of the temporal fascia: a histological study using human fetuses

  • Kei Kitamura;Satoshi Ishizuka;Ji Hyun Kim;Hitoshi Yamamoto;Gen Murakami;Jose Francisco Rodriguez-Vazquez;Shin-ichi Abe
    • Anatomy and Cell Biology
    • /
    • v.57 no.2
    • /
    • pp.288-293
    • /
    • 2024
  • The temporal fascia is a double lamina sandwiching a thick fat layer above the zygomatic bony arch. To characterize each lamina, their developmental processes were examined in fetuses. We observed histological sections from 22 half-heads of 10 mid-term fetuses at 14-18 weeks (crown-rump length, 95-150 mm) and 12 near-term fetuses at 26-40 weeks (crown-rump length, 215-334 mm). The superficial lamina of the temporal fascia was not evident at mid-term. Instead, a loose subcutaneous tissue was attached to the thin, deep lamina of the temporal fascia covering the temporalis muscle. At near-term, the deep lamina became thick, while the superficial lamina appeared and exhibited several variations: i) a mono-layered thick membrane (5 specimens); ii) a multi-layered membranous structure (6) and; iii) a cluster of independent thick fasciae each of which were separated by fatty tissues (1). In the second and third patterns, fatty tissue between the two laminae was likely to contain longitudinal fibrous bands in parallel with the deep lamina. Varying proportions of the multi-layered superficial lamina were not attached to the zygomatic arch, but extended below the bony arch. Whether or not lobulation or septation of fatty tissues was evident was not dependent on age. The deep lamina seemed to develop from the temporalis muscle depending on the muscle contraction. In contrast, the superficial lamina developed from subcutaneous collagenous bundles continuous to the cheek. Therein, a difference in development was clearly seen between two categories of the fasciae.

A Case Report of the Angiosarcoma Involving Epicranial Muscle and Fascia : Is the Occipitofrontalis Muscle Composed of Two Different Muscles?

  • Kim, Ho Kyun;Lee, Hui Joong
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.1
    • /
    • pp.78-81
    • /
    • 2016
  • The occipitofrontalis muscle is generally regarded as one muscle composed of two muscle bellies joined through the galea aponeurotica. However, two muscle bellies have different embryological origin, anatomical function and innervations. We report a case of angiosarcoma of the scalp in a 63-year-old man whose MR showed that the superficial fascia overlying the occipital belly becomes the temporoparietal fascia and ends at the superior end of the frontal belly. Beneath the superficial fascia, the occipital belly of the occipitofrontalis muscle becomes the galea aponeurotica and inserts into the underside of the frontal belly. The presented case report supported the concept of which the occipitofrontalis muscle appears to be composed of two anatomically different muscles.

Study on the Skin of Hand Lesser Yang from the Viewpoint of Human Anatomy

  • Park, Kyoung-Sik
    • The Journal of Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.69-73
    • /
    • 2015
  • Objectives: This study was carried out to analyse the skin of the Hand lesser yang in human. Methods: The Hand lesser yang meridian was labeled with latex in the body surface of the cadaver, subsequently dissecting a body among superficial fascia and muscular layer in order to observe internal structures. Results: This study has come to the conclusion that a depth of the skin has encompassed a common integument and a immediately below superficial fascia, and this study established the skin boundary with adjacent structures such as relative muscle, tendon as compass. The skin area of the Hand lesser yang in human is as follows: The skin close to the ulnar root angle of 4th finger nail, above between 4th and 5th metacarpal bone, between extensor digit. minimi tendon(t.) and extensor digit. t., extensor digit. m(muscle). at 2, 4, 7 cun above dorsal carpal striation, triceps brachii m. t., deltoid m., trapezius m., just around the ear, upper orbicularis oculi m. Conclusions: The skin area of the Hand lesser yang from anatomical viewpoint seems to be the skin area outside the superficial fascia or the muscle involved in the pathway of the Hand lesser yang meridian, the collateral meridian, the meridian muscle, with the condition that we consider adjacent skins.

Study on Hand Greater Yang Skin from the Viewpoint of Human Anatomy

  • Park, Kyoung-Sik
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.121-125
    • /
    • 2018
  • Objectives: This study was carried out to analyse Hand Greater Yang Skin in human. Methods: Hand Greater Yang meridian was labeled with latex in the body surface of the cadaver. And subsequently body among superficial fascia and muscular layer were dissected in order to observe internal structures. Results : A depth of Skin encompasses a common integument and a immediately below superficial fascia, this study established Skin boundary with adjacent structures such as relative muscle, tendon as compass. The Skin area of the Hand Greater Yang in human are as follows: The skin close to 0.1chon ulnad of $5^{th}$ nail angle, ulnad base of $5^{th}$ phalanx, ulnad head of $5^{th}$ metacapus(relevant muscle: abductor digiti minimi muscle), ulnad of hamate, tip of ulnar styloid process(extensor carpi ulnaris tendon), radiad of ulnar styloid process, 2cm below midpoint between Sohae and Yanggok(extensor carpi ulnaris), between medial epicondyle of humerus and olecranon of ulnar(ulnar nerve), The skin close to deltoid muscle, trapezius muscle, platysma muscle, inner muscles such as teres major muscle, infraspinatus muscle, supraspinatus muscle, levator scapulae muscle, splenius cervicis muscle, splenius capitis muscle, sternocleidomastoid muscle, digastric muscle, stylohyoid muscle, zygomaticus major muscle, auricularis anterior muscle. Conclusions: The Skin area of the Hand Greater Yang from the anatomical viewpoint seems to be the skin area outside the superficial fascia or muscles involved in the pathway of Hand Greater Yang meridian, collateral meridian, meridian muscle, with the condition that we consider adjacent skins.

Anatomical Study on Hand Gworeum Skin in Human

  • Park, Kyoung-Sik
    • The Journal of Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.72-77
    • /
    • 2020
  • Objectives: This study was carried out to concrete the concept of Hand Gworeum Skin referred in Suwen of Huangdi Neijing. Methods: The Hand Gworeum Meridian was labeled with latex in the body surface of the cadaver, subsequently dissecting a superficial fascia and muscular layer in order to observe internal structures. Results: Skin histologically encompasses a common integument and a immediately below superficial fascia, this study established the skin boundary with adjacent structures such as relative muscle, tendon as its compass. The realm of the Hand Gworeum Skin is as follows: The skin close to the nipple on the 4th intercostal space, the interceps of biceps brachii muscle, the cubital surface at ulnad of bicipital aponeurosis, the anterior surface of the forearm, between flexor carpi radialis and palmaris longus(from wrist crease to 5chon above), the palm between the 3rd and 4th metacarpals on the cross part with the palm crease, the radiod from the middle finger nail(or the end of middle finger). The realm of the Hand Gworeum Skin is situated on between Hand Taeeum Skin and Hand Soeum Skin in front of arm. Conclusion: The realm of Hand Gworeum Skin from the anatomical viewpoint seems to be the skin area outside the superficial fascia or the muscle involved in the pathway of the Hand Gworeum Meridian vessel, Collateral Meridian vessel, and Meridian muscle, being considered adjacent vessels or nerves at the same time.

Acute effect of self-myofascial release using a foam roller on the plantar fascia on hamstring and lumbar spine superficial back line flexibility

  • Do, Kwangsun;Kim, Jaeeun;Yim, Jongeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the immediate effect of applying self-myofascial release (SMR) to the plantar fascia using a foam roller on hamstring and lumbar spine superficial back line (SBL). Design: Randomized controlled trial. Methods: Thirty-one healthy adults agreed to the method and purpose of the study. Selection and exclusion criteria were screened, and baseline measurements for the Toe Touch test and passive straight leg raise (PSLR) test were obtained. The participants were then randomly assigned to the SMR group or the sham group. After group assignment, the SMR group rolled the surface of the foot from the heel to the metatarsal head using a foam roller for 5 minutes. The sham group received passive mobilization of the ankle joint in the supine position. Afterwards, the Toe Touch test and the passive straight leg-raise test were re-assessed. Results: In the SMR group, the Toe Touch test results showed significant improvement (p<0.05). Left and right PSLR test results showed a significant increase (p<0.05). In the sham group, there was no significant difference between pre and post-test results. The SMR group showed a significant difference in the PSLR test and Toe Touch test compared to the sham group (p<0.05). Conclusions: The results of this study showed that SMR on the plantar fascia was immediately effective for improving the flexibility of the SBL of the lumbar spine and hamstring.

Temple and Postauricular Dissection in Face and Neck Lift Surgery

  • Lee, Joo Heon;Oh, Tae Suk;Park, Sung Wan;Kim, Jae Hoon;Tansatit, Tanvaa
    • Archives of Plastic Surgery
    • /
    • v.44 no.4
    • /
    • pp.261-265
    • /
    • 2017
  • Periauricular paresthesia may afflict patients for a significant amount of time after facelift surgery. When performing face and neck lift surgery, temple and posterior auricular flap dissection is undertaken directly over the auriculotemporal, great auricular, and lesser occipital nerve territory, leading to potential damage to the nerve. The auriculotemporal nerve remains under the thin outer superficial fascia just below the subfollicular level in the prehelical area. To prevent damage to the auriculotemporal nerve and to protect the temporal hair follicle, the dissection plane should be kept just above the thin fascia covering the auriculotemporal nerve. Around the McKinney point, the adipose tissue covering the deep fascia is apt to be elevated from the deep fascia due to its denser fascial relationship with the skin, which leaves the great auricular nerve open to exposure. In order to prevent damage to the posterior branches of the great auricular nerve, the skin flap at the posterior auricular sulcus should be elevated above the auricularis posterior muscle. Fixating the superficial muscular aponeurotic system flap deeper and higher to the tympano-parotid fascia is recommended in order to avoid compromising the lobular branch of the great auricular nerve. The lesser occipital nerve (C2, C3) travels superficially at a proximal and variable level that makes it vulnerable to compromise in the mastoid dissection. Leaving the adipose tissue at the level of the deep fascia puts the branches of the great auricular nerve and lesser occipital nerve at less risk, and has been confirmed not to compromise either tissue perfusion or hair follicles.

Thin elevation: A technique for achieving thin perforator flaps

  • Jeong, Hyung Hwa;Hong, Joon Pio;Suh, Hyun Suk
    • Archives of Plastic Surgery
    • /
    • v.45 no.4
    • /
    • pp.304-313
    • /
    • 2018
  • Elevating thin flaps has long been a goal of reconstructive surgeons. Thin flaps have numerous advantages in reconstruction. In this study, we present a surgical method for elevating a thin flap and demonstrate the safety of the procedure. A retrospective review was performed of the electronic medical records of patients who underwent thin flap elevation for lower extremity reconstruction from April 2016 to September 2016 at the Department of Plastic Surgery of Asan Medical Center. All flaps included in this study were elevated above the superficial fascia. A total of 15 superficial circumflex iliac artery free flaps and 13 anterolateral thigh free flaps were enrolled in the study. The total complication rate was 17.56% (n=5), with total loss of the flap in one patient (3.57%) and partial necrosis of the flap in four patients (14.28%). No wound dehiscence or graft loss at the donor wound took place. Elevation above the superficial fascia is not inferior in terms of flap necrosis risk and is superior for reducing donor site morbidity. In addition to its safety, it yields good aesthetic results.

A novel subdermal anchoring technique for the effective treatment of congenital melanocytic nevus using de-epithelialized dermal flaps

  • Han, Jin Woo;Sun, Hook;Kim, Jin Woo;Yun, Ji Young;Chung, Eui Han;Oh, Min Jun
    • Archives of Plastic Surgery
    • /
    • v.48 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • Background In patients with congenital melanocytic nevus (CMN), single-stage removal of large lesions can be difficult because the high tension created by excising and repairing a large lesion may result in scar widening. Herein, we introduce a method to effectively excise lesions while minimizing scarring and compare its outcomes to those of existing surgical methods. Methods We compared patients who underwent surgery using the anchoring technique (n=42) or the conventional elliptical technique (n=36). One side of the lesion was removed via en bloc resection up to the superficial fascia. The other side of the lesion was removed via de-epithelialization. The de-epithelialized dermal flap was then fixed by suturing it to the superficial fascia on the opposite side. The length of the lesion's long axis and amount of scar widening were measured immediately after surgery and at 2, 6, and 12 months postoperatively. At 12 months, patients were assessed using the Patient and Observer Scar Assessment Scale. Results The lesion locations included the face, arms, legs, back, and abdomen. The anchoring method resulted in shorter and smaller scars than the conventional method. There were no cases of postoperative hematoma or wound dehiscence. Significant differences in postoperative scar widening were found in the arm and leg areas (P<0.05). Conclusions The anchoring method introduced in this study can provide much better outcomes than the conventional method. The anchoring method is particularly useful for the removal of CMN around the joints or extremities, where the surgical site is subjected to high tension.

USING OF THE TEMPORALIS MUSCLE AND FASCIA FLAP FOR MAXILLA RECONSTURCTION (상악 결손부 수복을 위한 측두피판의 이용)

  • Kim, Young-Jo;Lee, Dong-Keun;Kim, Kui-Hee;Yoon, Sung-Phil;Chung, Chang-Joo;Jin, Kook-Bum
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 1994
  • The functional deformity following removal of the maxilla is considerable, especially following maxilla cancer excision. Rehabilitation of oral and maxillofacial region used to be very difficult with prosthesis or traditional flaps. Temporal muscle and fascia flaps have been described for immediate reconstruction following hemi-maxillectomy, but not total maxillectomy. The muscle and superficial fascia of the temporal area differ in their physical characteristics, vascular supply and clinical applications. Both can be employed independently or simultaneously as regional flaps in the reconstruction of a variety of complex craniofacial defects. Four case is presented in which 3 case maxilla cancer, one case non-union after maxilla fracture, and all case showed successful use of this flap. Only one patient developed partial necrosis of the flap ; significant necrosis did not occur in any other patient. This present paper reviews the anatomy, surgical technique and utilisation of temporal muscle and fascia flaps.

  • PDF