Baik, Young-Jin;Na, Sun Ik;Cho, Junhyun;Shin, Hyung-Ki;Lee, Gilbong
Transactions of the Korean Society of Mechanical Engineers B
/
v.40
no.10
/
pp.673-679
/
2016
Because of the growing interest in supercritical carbon dioxide power cycle technology owing to its potential enhancement in compactness and efficiency, supercritical carbon dioxide cycles have been studied in the fields of nuclear power, concentrated solar power (CSP), and fossil fuel power generation. This study introduces the current status of the research project on the supercritical carbon dioxide power cycle by Korea Institute of Energy Research (KIER). During the first phase of the project, the un-recuperated supercritical Brayton cycle test loop was built and tested. In phase two, researchers are designing and building a supercritical carbon dioxide dual Brayton cycle, which utilizes two turbines and two recuperators. Under the simulation condition considered in this study, it was confirmed that the design parameter has an optimal value for maximizing the net power in the supercritical carbon dioxide dual cycle.
Hejzlar, P.;Dostal, V.;Driscoll, M.J.;Dumaz, P.;Poullennec, G.;Alpy, N.
Nuclear Engineering and Technology
/
v.38
no.2
/
pp.109-118
/
2006
Various indirect power cycle options for a helium cooled gas cooled fast reactor (GFR) with particular focus on a supercritical $CO_2(SCO_2)$ indirect cycle are investigated as an alternative to a helium cooled direct cycle GFR. The balance of plant (BOP) options include helium-nitrogen Brayton cycle, supercritical water Rankine cycle, and $SCO_2$ recompression Brayton power cycle in three versions: (1) basic design with turbine inlet temperature of $550^{\circ}C$, (2) advanced design with turbine inlet temperature of $650^{\circ}C$ and (3) advanced design with the same turbine inlet temperature and reduced compressor inlet temperature. The indirect $SCO_2$ recompression cycle is found attractive since in addition to easier BOP maintenance it allows significant reduction of core outlet temperature, making design of the primary system easier while achieving very attractive efficiencies comparable to or slightly lower than, the efficiency of the reference GFR direct cycle design. In addition, the indirect cycle arrangement allows significant reduction of the GFR &proximate-containment& and the BOP for the $SCO_2$ cycle is very compact. Both these factors will lead to reduced capital cost.
The molten carbonate fuel cell has a high temperature of waste heat and can constitute a bottoming cycle to increase the efficiency. Previous study used a bottoming cycle as steam turbine cycle. In this study, we are going to replace the bottoming cycle with a supercritical carbon dioxide power cycle. The system power was compared to consider replacing the bottoming cycle. As a result, the power of the supercritical carbon dioxide power cycle at the present development stage is lower than that of the steam turbine cycle, but theoretically, the power can be larger than the steam turbine cycle. If the supercritical carbon dioxide power cycle improves the isentropic efficiency of the turbine by 89%, the isentropic efficiency of the compressor by 83%, and the effectiveness of the recuperator by 0.9, the power can be same to the steam turbine cycle.
Systematic research has been conducted by KAERI to develop a supercritical carbon dioxide Brayton cycle energy conversion system coupled with a sodium cooled fast reactor. For the development of the supercritical $CO_2$ Brayton cycle ECS, KAERI researched four major fields, separately. For the system development, computer codes were developed to design and analyze the supercritical $CO_2$ Brayton cycle ECS coupled with the KALIMER-600. Computer codes were developed to design and analyze the performance of the major components such as the turbomachinery and the high compactness PCHE heat exchanger. Three dimensional flow analysis was conducted to evaluate their performance. A new configuration for a PCHE heat exchanger was developed by using flow analysis, which showed a very small pressure loss compared with a previous PCHE while maintaining its heat transfer rate. Transient characteristics for the supercritical $CO_2$ Brayton cycle coupled with KALIMER-600 were also analyzed using the developed computer codes. A Na-$CO_2$ pressure boundary failure accident was analyzed with a computer code that included a developed model for the Na-$CO_2$ chemical reaction phenomena. The MMS-LMR code was developed to analyze the system transient and control logic. On the basis of the code, the system behavior was analyzed when a turbine load was changed. This paper contains the current research overview of the supercritical $CO_2$ Brayton cycle coupled to the KALIMER-600 as an alternative energy conversion system.
A KALIMER-600 concept which is a type of sodium-cooled fast reactor, has been developed at KAERI. It uses sodium as a primary coolant and is a pool-type reactor to enhance safety. Also, a supercritical carbon dioxide ($CO_2$) Brayton cycle is considered as an alternative to an energy conversion system to eliminate the sodium water reaction and to improve efficiency. In this study, a simplified model for analyzing the thermodynamic performance of the KALIMER-600 coupled with a supercritical $CO_2$ Brayton cycle was developed. To develop the analysis model, a commercial modular modeling system (MMS) was adopted as a base engine, which was developed by nHance Technology in USA. It has a convenient graphical user interface and many component modules to model the plant. A new user library for thermodynamic properties of sodium and supercritical $CO_2$ was developed and attached to the MMS. In addition, some component modules in the MMS were modified to be appropriate for analysis of the KALIMER-600 coupled with the supercritical $CO_2$ cycle. Then, a simplified performance analysis code was developed by modeling the KALIMER-600 plant with the modified MMS. After evaluating the developed code with each component data and a steady state of the plant, a simple power reduction and recovery event was evaluated. The results showed an achievable capability for a performance analysis code. The developed code will be used to develop the operational strategy and some control logics for the operation of the KALIMER-600 with a supercritical $CO_2$ Brayton cycle after further studies of analyzing various operational events.
The supercritical $CO_2$ Brayton cycle energy conversion system is presented as a promising alternative to the present Rankine cycle. The principal advantage of the S-$CO_2$ gas is a good efficiency at a modest temperature and a compact size of its components. The S-$CO_2$ Brayton cycle coupled to a SFR also excludes the possibilities of a SWR (Sodium-Water Reaction) which is a major safety-related event, so that the safety of a SFR can be improved. KAERI is conducting a feasibility study for the supercritical carbon dioxide (S-$CO_2$) Brayton cycle power conversion system coupled to KALIMER(Korea Advanced LIquid MEtal Reactor). The purpose of this research is to develop S-$CO_2$ Brayton cycle energy conversion systems and evaluate their performance when they are coupled to advanced nuclear reactor concepts of the type under investigation in the Generation IV Nuclear Energy Systems. This paper contains the research overview of the S-$CO_2$ Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system.
In this paper, the power generation efficiency increase has been studied for a Rankine cycle using both supercritical carbon dioxide as a working fluid and LNG as a coolant with PRO/II with PROVISION release 10.0 from Aveva company. Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the power generation cycle using LNG cold heat. Power generation efficiency was increased from 24.82% to 57.76% when using LNG as a coolant for supercritical carbon dioxide power generation cycle.
The supercritical $CO_2$ (S-$CO_2$) Brayton cycle has recently been gaining a lot of attention for application to next generation nuclear reactors. The advantages of the S-$CO_2$ cycle are high efficiency in the mild turbine inlet temperature region and a small physical footprint with a simple layout, compact turbomachinery, and heat exchangers. Several heat sources including nuclear, fossil fuel, waste heat, and renewable heat sources such as solar thermal or fuel cells are potential application areas of the S-$CO_2$ cycle. In this paper, the current development progress of the S-$CO_2$ cycle is introduced. Moreover, a quick comparison of various S-$CO_2$ layouts is presented in terms of cycle performance.
This study investigates the application of supercritical carbon dioxide (S-CO2) direct-cycle micro modular reactors (MMRs) in primary frequency control (PFC), which is a scenario characterized by significant load fluctuations that has received less attention compared to secondary load-following. Using a modified GAMMA + code and a deep neural network-based turbomachinery off-design model, the authors conducted an analysis to assess the behavior of the reactor core and fluid system under different PFC scenarios. The results indicate that the acceptable range for sudden relative electricity output (REO) fluctuations is approximately 20%p which aligns with the performance of combined-cycle gas turbines (CCGTs) and open-cycle gas turbines (OCGTs). In S-CO2 direct-cycle MMRs, the control of the core operates passively within the operational range by managing coolant density through inventory control. However, when PFC exceeds 35%p, system control failure is observed, suggesting the need for improved control strategies. These findings affirm the potential of S-CO2 direct-cycle MMRs in PFC operations, representing an advancement in the management of grid fluctuations while ensuring reliable and carbon-free power generation.
Transactions of the Korean Society of Mechanical Engineers B
/
v.26
no.10
/
pp.1370-1377
/
2002
This study analyzed the design performance of the bottoming system of combined cycle power plants using a once-through heat recovery steam generator. For a parallel arrangement of the main heater and reheater, parametric analyses were carried out to present the criteria for determining the reheater pressure and the location of the starting point of the reheater in the HRSG. The performance of the bottoming system was presented fer a range from high subcritical to supercritical pressure. The steam turbine power is as high as that of conventional triple-pressure bottoming systems. The serial arrangement of heat exchangers with division of each heater into several segments can achieve similar power level.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.