• 제목/요약/키워드: Supercritical Pressure Drop

검색결과 22건 처리시간 0.024초

수평관 내에서 이산화탄소 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer and Pressure Drop Characteristics during Supercritical Process of Carbon Dioxide in a Horizontal Tube)

  • 최이철;강병하;김석현
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.414-420
    • /
    • 2004
  • The heat transfer and pressure drop characteristics associated with the gas cooling of the supercritical carbon dioxide in a horizontal tube have been investigated experimentally. This problem is of particular interest in the design of a gas cooler of cooling systems using $CO_2$refrigerant. The test section is consisted of 6 series of 455 mm in length, 4.15 mm ID copper tube, respectively. The effects of the inlet temperature, pressure and mass flow rate on the heat transfer and pressure drop of $CO_2$in a horizontal tube is studied in detail. The heat transfer coefficient of $CO_2$is varied by temperature, inlet pressure, and mass flow rate of $CO_2$. This has maximum value at near the pseudocritical temperature. The pressure drop is changed by inlet pressure and mass flow rate of $CO_2$. The results have been compared with those of previous work. The heat transfer correlation at the supercritical gas cooling process is also suggested.

이산화탄소의 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구 (Experimental Studies on Heat Transfer and Pressure Drop Characteristics during Gas Cooling Process of Carbon Dioxide in the Supercritical Region)

  • 윤석호;김주혁;김민수
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.538-545
    • /
    • 2004
  • This paper presents the experimental data for the heat transfer and pressure drop characteristics obtained during the gas cooling process of carbon dioxide in a horizontal tube. The tube in which carbon dioxide flows is made of copper with an inner diameter of 7.73 mm. Experiments were conducted for various mass fluxes and inlet pressures of carbon dioxide. Mass fluxes are controlled at 225, 337 and 450 kg/$m^2$s and inlet pressures are adjust-ed from 7.5 to 8.8 ㎫. The experimental results in this study are compared with the existing correlations for the supercritical heat transfer coefficient, which generally under-predict the measured data. Pressure drop data agree very well with those calculated by the Blasius' equation. Based on the experimental data, a new empirical correlation to estimate the near-critical heat transfer coefficients has been developed.

마이크로핀관내 냉동기유가 초임계 이산화탄소의 열전달과 압력강하에 미치는 영향 (Effect of the lubrication oil on heat transfer and pressure drop characteristics of supercritical carbon dioxide in a microfin tube)

  • 구학근
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1440-1446
    • /
    • 2012
  • 본 논문은 수평 마이크로핀관내 초임계 $CO_2$와 PAG 혼합물의 열전달과 압력강하 특성에 대해서 실험적으로 연구한 것이다. $CO_2$와 PAG 혼합물의 열전달계수는 압력이 10 MPa이고, 질량유속은 520 kg/$m^2s$이며, PAG 오일 농도는 0.06~2.26%에서 측정하였다. PAG 오일농도가 0.3%인 경우, $CO_2$와 PAG 혼합물의 열전달계수와 압력강하는 순수 $CO_2$ 냉매의 열전달계수와 동일한 경향을 나타내었다. 그리고 PAG 질량농도가 2.26%인 경우, 초임계 온도근처에서 측정한 열전달계수는 순수 $CO_2$의 열전달계수 보다 약 50%정도 낮게 나타났다. 마찰압력강하는 $60^{\circ}C$$CO_2$ 평균온도에서 순수 $CO_2$의 압력강하보다 약 1.6배 더 높게 나타났다.

헬리컬 코일관 내 초임계 $CO_2$의 압력강하 특성 (Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube)

  • 유태근;김대희;노건상;구학근;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.216-221
    • /
    • 2005
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a helically coiled tube were investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a double pipe type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. It was made of a copper tube with the inner diameter of 4.85 [mm], the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were 200${\sim}$600 [kg/$m^2$s] and the average pressure varied from 7.5 [MPa] to 10.0 [MPa]. The main results were summarized as follows: The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

초임계 $CO_2$의 헬리컬 코일관 내 열선단과 압력강하 특성 (Heat Transfer and Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube)

  • 유태근;김대희;손창효;오후규
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.353-358
    • /
    • 2005
  • The heat transfer and pressure drop of supercritical $CO_2$ cooled in a helically coiled tube was investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The experimental apparatus of the refrigerant loop consist of receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a helically coiled tube in tube counter flow heat exchanger with $CO_2$ flowed inside the inner tube and coolant( water) flowed along the outside annular passage, It was made of it copper tube with the inner diameter of 4.55[mm]. the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were $200^{\sim}600$ [kg/m2s] and the inlet pressure of gas cooler varied from 7.5 [MPa] to 10.0 [MPa]. The main results are summarized as follows : The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

수평관내 이산화탄소의 냉각열전달과 압력강하 특성에 관한 연구 (Heat transfer and pressure drop characteristics during cooling process of supercritical $CO_2$ in a horizontal tube)

  • 손창효;김종열;노건상;구학근;박기원;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.244-245
    • /
    • 2005
  • This paper presents the heat transfer and pressure drop characteristics during cooling process of carbon dioxide in a horizontal tube. The test section is a tube in tube type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. It was made of a stainless steel tube with the inner diameter of 7.75 [mm], the outer 2 diameter of 9.53 [mm] and length of 6000 [mm]. The refrigerant mass fluxes were $200{\sim}400$ [kg/$m^2s$] and the average pressure varied from 7.5 [MPa] to 10.0 [MPa]. The main results were summarized as follows The heat transfer coefficient of supercritical $CO_2$ increases in decrease of the gas cooler pressure. And the heat transfer coefficient increases with respect to the increase of the refrigerant mass flux. Among some correlations proposed in a transcritical region, Bringer-Smith's correlation has some analogy with experimental results. The pressure drop decreases in increase of the gas cooler pressure and increases with respect to increase the refrigerant mass flux.

  • PDF

Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

  • Watanabe, Yutaka
    • Corrosion Science and Technology
    • /
    • 제7권4호
    • /
    • pp.237-242
    • /
    • 2008
  • Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of "physical properties of water" in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena.

세관내 R-22와 R-410A의 응축 압력강하 (The Condensation Pressure Drop of R-22 and R-410A in Small Diameter Tube)

  • 손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제19권2호
    • /
    • pp.156-162
    • /
    • 2008
  • The condensation pressure drop for R-22 and R-410A flowing in a small diameter tube was investigated. The test section is a counterflow heat exchanger with refrigerant flowing in the inner tube and coolant flowing in the annulus. The test section consists of 1220 mm length with horizontal copper tube of 3.38 mm outer diameter and 1.77 mm inner diameter. The refrigerant mass fluxes ranged from 450 to $1050\;kg/m^2{\cdot}s$ and the average inlet and outlet qualities were 0.05 and 0.95, respectively. The main experimental results were summarized as follows : In the case of two-phase flow, the pressure drop increases with increasing mass flux and decreasing quality. The pressure drop of R-22 is slightly higher than that of R-410A for the same mass flux. Most of correlations proposed in the large diameter tube showed enormous deviations with experimental data.

ANALYTICAL AND EXPERIMENTAL PROGRAM OF SUPERCRITICAL HEAT TRANSFER RESEARCH AT THE UNIVERSITY OF OTTAWA

  • Groeneveld, Dionysius C.;Tavoularis, Stavros;Raogudla, Prassada;Yang, Sun-Kyu;Leung, Laurence K.H.
    • Nuclear Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.107-116
    • /
    • 2008
  • The present paper describes the preliminary compilation, assessment and examination of the supercritical heat transfer(SCHT) database. The availability and reliability of the SCHT data are discussed. Similarities in thermodynamic supercritical properties and SCHT behaviour of water, $CO_{2}$ and R-134a have been examined and some tentative conclusions are made. Finally, the future experimental and analytical program at the University of Ottawa is described.

수평관내 이산화탄소의 증발 열전달과 압력강하 (Evaporation Heat Transfer and Pressure Drop of Carbon Dioxide In a Horizontal Tube)

  • 손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.189-196
    • /
    • 2007
  • The evaporation heat transfer coefficient and pressure drop of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The main components of the experimental apparatus are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and an evaporator(test section). The test section consists of a horizontal stainless steel tube of 4.57 mm inner diameter. The experiments were conducted at mass flux of $200{\sim}1000\;kg/m^2s$ saturation temperature of $0{\sim}20^{\circ}C$, and heat flux of $10{\sim}40\;kW/m^2$. The test results showed that the heat transfer coefficient of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not affect nucleate boiling too much. In comparison with test data and existing correlations, All of the existing correlations for the heat transfer coefficient underestimated the experimental data. However lung et al.'s correlation showed a good agreement with the experimental data. The evaporation pressure drop of $CO_2$ increases with increasing mass flux and decreasing saturation temperature. When comparison between the experimental pressure drop and existing correlations. Existing correlations failed to predict the evaporation pressure drop of $CO_2$.