• 제목/요약/키워드: Supercritical Fluids

검색결과 67건 처리시간 0.022초

초임계법을 이용한 난분해성 유해물질인 폴리염화비폐닐(PCB)의 무해화 처리에 관한 총설(1) (Letters on Innoxious Treatment of Recalcitrant Nobiodegrable PCB Using Supercritical Method(1))

  • 김정성;박윤열;김성윤
    • 한국환경과학회지
    • /
    • 제9권6호
    • /
    • pp.523-529
    • /
    • 2000
  • Attempts have been made to use Supercritical fluids for industrial purpose in a variety of fields and some of them, are already in practice. However, basic chemical properties of supercritical fluids have not been understood well. The present pater presents the results of physicochemical studies on Supercritical fluids as well as the application of supercritical fluids to industry. The detail is as follows PCB and organic compounds.

  • PDF

화약제조 공정의 초임계 유체 응용 (Application of Supercritical Fluid in Energetic Materials Processes)

  • 송은석;김화용;김현수;이윤우
    • 한국군사과학기술학회지
    • /
    • 제9권3호
    • /
    • pp.77-87
    • /
    • 2006
  • Micro- or nano-size particles are required to improve the combustion efficiency and stability in the case of solid explosives and propellants. The micro-structural properties of an energetic material strongly influence the combustion and explosion behavior. However, the traditional size reduction techniques, including milling, are not suitable for production of ultra-fine size particles. As an alternative to the traditional techniques, various re-crystallization processes based on supercritical fluids have recently been proposed. Supercritical fluids are fluids at temperatures and pressures above their critical point. In principle, they do not give problems of solvent contamination as they are completely released from the solute when the decompression occurs. Rapid Expansion Supercritical Solutions(RESS) and Supercritical Anti-Solvent Process(GAS/SAS) are representatives of a nano-size particle formation process of energetic materials using supercritical fluids. In this work, various fine particle formation processes using supercritical fluids are discussed and the results are presented.

Manufacturing Polymer/clay Nanocomposites Using a Supercritical Fluid Process

  • Jung, Hyun-Taek;Yoon, Ho-Gyu;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권4호
    • /
    • pp.63-65
    • /
    • 2008
  • The increased interest in reducing the environmental effects caused by releasing organic compounds and aqueous waste has motivated the development of polymeric materials in supercritical fluids. Recently, supercritical fluids have been used in material synthesis and processing because of their special properties, such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive because it is non-toxic, non-flammable, and has moderate critical temperature and critical pressure values. Supercritical carbon dioxide can also swell most polymers. In this study, we prepared polymer/clay nanocomposites using supercritical fluids. Cloisites 10A, 15A, 25A, and 30B used in this study are montmorillonites modified with a quaternary ammonium salt. The nanocomposites of polymer/clay were characterized by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry.

초임계 유체의 미생물 불활성화 특성 및 기작 (Antimicrobial Activity and Mechanism of Supercritical Fluids)

  • 문성민;김정찬;이윤우;윤제용
    • 공업화학
    • /
    • 제22권5호
    • /
    • pp.453-460
    • /
    • 2011
  • 안전하고 미생물 불활성화 능력이 높은 초임계 유체(이산화탄소 및 일산화이질소)는 최근 식품 및 의료 분야 등에서 비가열 살균기술로 응용 가능성이 높아 관심이 증대되고 있다. 하지만 초임계 유체를 이용한 많은 응용 연구에도 불구하고 초임계 유체 살균기술의 살균 성능 및 기작에 대한 이해 부족으로 아직 널리 활용되고 있지 못하다. 따라서 본 글에서는 기존 연구를 중심으로 초임계 유체 특성, 미생물 불활성화 특성과 기작, 주요 영향 인자, 응용 분야 등에 대해서 정리 및 검토하여 초임계 유체 살균기술의 연구 및 상용화에 도움이 되고자 한다.

ASSESSMENT OF STABILITY MAPS FOR HEATED CHANNELS WITH SUPERCRITICAL FLUIDS VERSUS THE PREDICTIONS OF A SYSTEM CODE

  • Ambrosini, Walter;Sharabi, Medhat Beshir
    • Nuclear Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.627-636
    • /
    • 2007
  • The present work is aimed at further discussing the effectiveness of dimensionless parameters recently proposed for the analysis of flow stability in heated channels with supercritical fluids. In this purpose, after presenting the main motivations for the introduction of these parameters in place of previously proposed ones, additional information on the theoretical bases and on the consequences of this development is provided. Stability maps, generated by an in-house program adapted from a previous application to boiling channels, are also shown for different combinations of the operating parameters. The maps are obtained as contour plots of an amplification parameter obtained from numerical discretization and subsequent linearization of governing equations; as such, they provide a quantitatively clear perspective of the effect of different boundary conditions on the stability of heated channels with supercritical fluids. In order to assess the validity of the assumptions at the basis of the in-house model, supporting calculations have been performed making use of the RELAP5/MOD3.3 computer code, detecting the values of the dimensionless parameters at the threshold for the occurrence of instability for a heated channel representative of SCWR proposed core configurations. The obtained results show reasonable agreement with the maps, supporting the applicability of the proposed scaling parameters for describing the dynamic behaviour of heated channels with supercritical fluids.

초임계 이산화탄소를 이용한 감마 리놀렌산의 분리에 대한 연구 (A Study of Separation of γ-linolenic acid with Supercritical Carbon Dioxide)

  • 조인호;상희선
    • 한국산업융합학회 논문집
    • /
    • 제10권2호
    • /
    • pp.97-104
    • /
    • 2007
  • In different approaches were extracted from evening primrose seed by supercritical fluids carbon dioxide and for comparison with hexane as solvent. The extracts have been analyzed qualitatively and quantitatively to evaluate yield and selectivity of ${\gamma}$-linolenic acid. The yields extracts with supercritical fluids carbon dioxide were higher than those with hexane. When this process produces commercially, will get a many economic profit.

  • PDF

격자유체이론을 이용한 초임계유체내에서의 상평형 (Lattice-Fluid Description of Phase Equilibria in Supercritical Fluids)

  • 김기창
    • 산업기술연구
    • /
    • 제11권
    • /
    • pp.3-16
    • /
    • 1991
  • The lattice-fluid theory are adopted for modeling the phese equilibria in supercritical fluids, In order to investigate effects of the nonrandom distribution of holes in mixtures on the phase equilibria, the equation of state and the chemical potential of the binary miture are formulated with taking into account nonrandomness of holes distributions in the fluid mixture. The relations of phase equilibria formulated in this work are tested through predictions of solubility of heavy solids in supercritical fluids and predictions of high pressure phase equilibria of binary mixtures. Results obtained exhibit that the lattice fluid model with assumptions of nonrandomness of hole distributions is successful in quantatively mideling the phase equilibria of mixtures of molecules of dissimilar sizes, specifically solids-supercritical fluid mixtures.

  • PDF

초임계 유체 및 다공성 소재 제조 기술 (Supercritical Fluids and Preparation of Porous Materials)

  • 이준영;안준현;김중현
    • 공업화학
    • /
    • 제16권2호
    • /
    • pp.169-179
    • /
    • 2005
  • 다공성 소재는 바이오 및 전기전자소재 등 다양한 분야에 폭넓게 응용될 수 있다. 이러한 가공소재의 제조 및 공정은 주로 유기용매의 사용에 의해 이루어지고 있으나 유기용매는 대기 방출과 같은 많은 환경성 문제를 야기시키고 있다. 이에 반하여 초임계 유체는 기능성 기공 소재의 제조를 위한 대안 용매로서 수많은 물리적, 화학적 그리고 유독성 측면에서 유용한 장점을 보여주고 있다. 본 총설에서는 초임계 유체를 이용하여 나노/마크로 크기의 미세 기공구조 설계 및 형상 제어를 위한 공정 기술과 초임계 유체 내에서의 화학적 합성 반응을 통한 다공성 소재의 제조 기술을 소개하고자 한다.

Numerical analysis of Poiseuille-Rayleigh-Bénard convection in supercritical carbon dioxide

  • Wang, Zhipeng;Xu, Hong;Chen, Chong;Hong, Gang;Song, Zhenguo;Zhang, Yaoli
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3540-3550
    • /
    • 2022
  • The supercritical carbon dioxide (S-CO2) Brayton cycle is an important energy conversion technology for the fourth generation of nuclear energy. Since the printed circuit heat exchanger (PCHE) used in the S-CO2 Brayton cycle has narrow channels, Rayleigh-Bénard (RB) convection is likely to exist in the tiny channels. However, there are very few studies on RB convection in supercritical fluids. Current research on RB convection mainly focuses on conventional fluids such as water and air that meet the Boussinesq assumption. It is necessary to study non-Boussinesq fluids. PRB convection refers to RB convection that is affected by horizontal incoming flow. In this paper, the computational fluid dynamics simulation method is used to study the PRB convection phenomenon of non-Boussinesq fluid-supercritical carbon dioxide. The result shows that the inlet Reynolds number (Re) of the horizontal incoming flow significantly affects the PRB convection. When the inlet Re remains unchanged, with the increase of Rayleigh number (Ra), the steady-state convective pattern of the fluid layer is shown in order: horizontal flow, local traveling wave, traveling wave convection. If Ra remains unchanged, as the inlet Re increases, three convection patterns of traveling wave convection, local traveling wave, and horizontal flow will appear in sequence. To characterize the relationship between traveling wave convection and horizontal incoming flow, this paper proposes the relationship between critical Reynolds number and relative Rayleigh number (r).

Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

  • Sarkar, Milan Krishna Singha;Basu, Dipankar Narayan
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.103-112
    • /
    • 2017
  • Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.