• Title/Summary/Keyword: Supercritical CO2

Search Result 125, Processing Time 0.031 seconds

Development and Application of Micromodel for Visualization of Supercritical CO2 Migration in Pore-scale (공극 규모에서의 초임계상 이산화탄소 거동 가시화를 위한 마이크로모델의 개발과 적용)

  • Park, Bogyeong;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.73-82
    • /
    • 2015
  • Despite significant effects on macroscopic migration and distribution of CO2 injected during geological sequestration, only limited information is available on wettability in microscopic scCO2-brine-mineral systems due to difficulties in pore-scale observation. In this study, a micromodel had been developed to improve our understanding of how scCO2 flooding and residual characteristics of porewater are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of glass beads and glass plates) in a pressurized chamber provided the opportunity to visualize scCO2 spreading and porewater displacement. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through an imaging system. Measurement of contact angles of residual porewater in micromodels were conducted to estimate wettability in a scCO2-water-glass bead system. The measurement revealed that the brine-3M NaCl solution-is a wetting fluid and the surface of glass beads is water-wet. It is also found that the contact angle at equilibrium decreases as the pressure decreases, whereas it increases as the salinity increases. Such changes in wettability may significantly affect the patterns of scCO2 migration and porewater residence during the process of CO2 injection into a saline aquifer at high pressures.

Quality Properties of Conger Eel (Conger myriaster) Oils Extracted by Supercritical Carbon Dioxide and Conventional Methods (초임계 이산화탄소 및 유기용매를 이용하여 추출된 붕장어(Conger myriaster) 오일의 품질특성)

  • Park, Jin-Seok;Cho, Yeon-Jin;Jeong, Yu-Rin;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.275-282
    • /
    • 2019
  • In this study, the extraction of Conger myriaster oil by using supercritical carbon dioxide (SC-CO2) and organic solvent was investigated. The extraction conditions conducted for SC-CO2 varied for pressure (25, 30 MPa) and temperature (45, 55 ℃), while the SC-CO2 flow rate was kept constant during the experiment (27 g min-1) and hexane was used as a conventional organic solvent. The extraction yield indicated that the best extraction condition would be SC-CO2 at 55 ℃ and 30 MPa, resulting in the highest yield of 37.73 ± 0.14%. The oils were characterized for their fatty acid (FAs) composition using gas chromatography, while it was revealed that the major FAs were mystric acid, palmitoleic acid, oleic acid, electroosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The oxidation stability of the extracted C. myriaster oil was evaluated by measuring the acid value, peroxide value, and free fatty acid. The best oxidative stability was obtained from SC-CO2 extracted oil at 30 MPa and 55 ℃. There was a significant difference in the color properties of the SC-CO2 and hexane extracted oils, with the SC-CO2 extracted oil showing better chromaticity than the oil extracted using hexane. Extracting oils from C. myriaster with SC-CO2 could bring better economic benefits than using organic solvents. When supercritical carbon dioxide was used, there was no post-treatment process; thus, it was confirmed that this is a more environmentally friendly oil extraction method.

Synthesis of Dimethyl Carbonate from Methanol and Supercritical Carbon Dioxide over K2CO3/ZrO2 Catalysts (메탄올과 초임계 이산화탄소로부터 K2CO3/ZrO2 촉매를 이용한 디메틸카보네이트 (Dimethyl Carbonate) 합성)

  • Hong, Seung Tae;Park, Hyung Sang;Lim, Jong Sung;Yoo, Ki-Pung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.550-554
    • /
    • 2008
  • The synthesis of dimethyl carbonate (DMC) from methanol and supercritical carbon dioxide over $K_2CO_3/ZrO_2$ catalysts have been studied. The catalysts were prepared by impregnating $ZrO_2$ with an aqueous $K_2CO_3$ solution. The optimum calcination temperature to disperse K species on the $ZrO_2$ surface was found to be 673 K. Monoclinic $ZrO_2$ was not active, as itself, for the DMC production. However, when the $K_2CO_3$ was impregnated on the $ZrO_2$, the catalytic performance was improved. Besides the catalyst, $CH_3I$ was used as a promoter. The $CH_3I$ promoter as well as the $K_2CO_3/ZrO_2$ catalyst was found to take an important role to improve the production of DMC. The optimum quantities for the catalyst and the promoter were estimated. The effect of the catalyst and the promoter for the DMC synthesis from methanol and supercritical carbon dioxide was investigated and the reaction mechanism was proposed.

The Influence of the Contact Amount of Supercritical CO2 on Dyeing Uniformity (초임계 CO2 접촉량이 염색 균염성에 미치는 영향에 대한 연구)

  • Park, Shin;Choi, Hyunseuk;Kim, Taeyoung;Song, Taehyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • The influence of the contact amount of carbon dioxide per unit mass of dyestuff(${\alpha}$) on dyeing uniformity in supercritical fluid dyeing is analyzed in this study. The experiments using a 5L class Pilot Scale dyeing machine is carried out for this study purpose. For a fixed temperature and pressure, the amount of sample and the dyeing leveling time were considered as process variables. The results show that the increase in the amount of the sample causes a higher color difference than the reference sample, and it also increases the amount of residual dye. On the other hand, the color difference tended to decrease with the increase in dyeing time. Based on these results, the correlation between ${\alpha}$ value and dyeing uniformity in supercritical fluid dyeing is obtained.

Feasibility and performance limitations of Supercritical carbon dioxide direct-cycle micro modular reactors in primary frequency control scenarios

  • Seongmin Son;Jeong Ik Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1254-1266
    • /
    • 2024
  • This study investigates the application of supercritical carbon dioxide (S-CO2) direct-cycle micro modular reactors (MMRs) in primary frequency control (PFC), which is a scenario characterized by significant load fluctuations that has received less attention compared to secondary load-following. Using a modified GAMMA + code and a deep neural network-based turbomachinery off-design model, the authors conducted an analysis to assess the behavior of the reactor core and fluid system under different PFC scenarios. The results indicate that the acceptable range for sudden relative electricity output (REO) fluctuations is approximately 20%p which aligns with the performance of combined-cycle gas turbines (CCGTs) and open-cycle gas turbines (OCGTs). In S-CO2 direct-cycle MMRs, the control of the core operates passively within the operational range by managing coolant density through inventory control. However, when PFC exceeds 35%p, system control failure is observed, suggesting the need for improved control strategies. These findings affirm the potential of S-CO2 direct-cycle MMRs in PFC operations, representing an advancement in the management of grid fluctuations while ensuring reliable and carbon-free power generation.

Pore-scale Investigation on Displacement of Porewater by Supercritical CO2 Injection Using a Micromodel (초임계상 이산화탄소 주입으로 인한 공극수 대체에 관한 공극 규모의 마이크로모델 연구)

  • Park, Bogyeong;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.35-48
    • /
    • 2016
  • A micromodel was applied to estimate the effects of geological conditions and injection methods on displacement of resident porewater by injecting scCO2 in the pore scale. Binary images from image analysis were used to distinguish scCO2-filled-pores from other pore structure. CO2 flooding followed by porewater displacement, fingering migration, preferential flow and bypassing were observed during scCO2 injection experiments. Effects of pressure, temperature, salinity, flow rate, and injection methods on storage efficiency in micromodels were represented and examined in terms of areal displacement efficiency. The measurements revealed that the areal displacement efficiency at equilibrium decreases as the salinity increases, whereas it increases as the pressure and temperature increases. It may result from that the overburden pressure and porewater salinity can affect the CO2 solubility in water and the hydrophilicity of silica surfaces, while the neighboring temperature has a significant effect on viscosity of scCO2. Increased flow rate could create more preferential flow paths and decrease the areal displacement efficiency. Compared to the continuous injection of scCO2, the pulse-type injection reduced the probability for occurrence of fingering, subsequently preferential flow paths, and recorded higher areal displacement efficiency. More detailed explanation may need further studies based on closer experimental observations.

Theoretical Studies for the Supercritical CO2 Solubility of Organophosphorous Molecules: Lewis Acid-Base Interactions and C-H···O Weak Hydrogen Bonding

  • Kim, Kyung-Hyun;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2454-2458
    • /
    • 2007
  • Exploring the basic concepts for the design of CO2-philic molecules is important due to the possibility for “green” chemistry in supercritical CO2 as substitute solvent systems. The Lewis acid-base interactions and C?H…O weak hydrogen bonding were suggested as two key factors for the solubility of CO2-philic molecules. We have performed high level quantum mechanical calculations for the van der Waals complexes of CO2 with trimethylphosphate and trimethylphosphine oxide, which have long been used for metal extractants in supercritical CO2 fluid. Structures and energies were calculated using the MP2/6-31+G(d) and recently developed multilevel methods. These studies indicate that the Lewis acid-base interactions have larger impact on the stability of structure than the C?H…O weak hydrogen bonding. The weak hydrogen bonds in trimethylphosphine oxide have an important role to the large supercritical CO2 solubility when a metal is bound to the oxygen atom of the P=O group. Trimethylphosphate has many Lewis acid-base interaction sites so that it can be dissolved into supercritical CO2 easily even when it has metal ion on the oxygen atom of the P=O group, which is indispensable for a good extractant.

Drying Characteristics of Apple Slabs after Pretreatment with Supercritical CO2

  • Lee, Bo-Su;Choi, Yong-Hee;Lee, Won-Young
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.261-266
    • /
    • 2011
  • Supercritical $CO_2$ pretreatment before dehydration leads to a faster dehydration rate. The best supercritical $CO_2$ pretreatment conditions for the most effective dehydration were $45^{\circ}C$, 25 MPa and $55^{\circ}C$, 25 MPa. Increasing pressure of the supercritical $CO_2$ pretreatment system tended to accelerate the dehydration rate more than increasing temperature did. Samples pretreated at higher temperatures and pressures showed greater shrinking and pore distribution on scanning electron microscopy. Control samples maintained their cell walls, whereas samples pretreated at higher temperatures and pressures showed more cell disruption, and more pores were observed. Pore sizes of control and pretreated samples were about 100 and $70{\sim}80\;{\mu}m$, respectively. Samples pretreated at higher temperatures and pressures had smaller pores and a denser distribution.

Effects of inlet working condition and heat load on supercritical CO2 compressor performance

  • Jinze Pei;Yuanyang Zhao;Mingran Zhao;Guangbin Liu;Qichao Yang;Liansheng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2812-2822
    • /
    • 2023
  • The supercritical carbon dioxide (sCO2) Brayton power cycle is more effective than the conventional power cycle and is more widely applicable to heat sources. The inlet working conditions of the compressor have a higher influence on their operating performance because the thermophysical properties of the CO2 vary dramatically close to the critical point. The flow in the sCO2 compressor is simulated and the compressor performance is analyzed. The results show that the sCO2 centrifugal compressor operates outside of its intended parameters due to the change in inlet temperature. The sCO2 compressor requires more power as the inlet temperature increases. The compressor power is 582 kW when the inlet temperature is at 304 K. But the power is doubled when the inlet temperature increases to 314 K, and the change in the isentropic efficiency is within 5%. The increase in the inlet temperature significantly reduces the risk of condensation in centrifugal compressors. When the heat load of the sCO2 power system changes, the inlet pressure to the turbine can be kept constant by regulating the rotational speed of compressors. With the increase in rotational speed, the incidence loss and condensation risk increase.