• Title/Summary/Keyword: Superconducting were

Search Result 1,190, Processing Time 0.026 seconds

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

Critical Current Properties of Bi-2223/Ag tapes with respect to axial Strain (Bi-2223/Ag 고온 초전도 선재 변형에 따른 입계전류 특성)

  • 하홍수;오상수;하동우;심기덕;김상철;장현만;권영길;류강식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2001
  • In this study, we fabricated Bi-2223/Ag high temperature superconducting tapes using PIT(Powder-In-Tube) process to apply the superconducting magnet, cable and etc. It is inevitable to deform the superconducting taps with axial strain for application. Therefore, for the characterization of the strain sensitivity of the superconducting properties, the degradation of Bi-2223/Ag tapes due to axial strain were investigated by measuring the critical current as a function of applied tension strain and external magnetic field. The critical current of Bi-2223/Ag tapes were decreased slightly up to 0.3∼0.4% applied strain but, drastically decreased more than these strains. Superconducting filament cores consisted of brittle ceramic fibers were broken easily by the large strain and current path were decreased simultaneously.

  • PDF

Critical Current Properties of Bi-2223/Ag tapes with respect to axial Strain (Bi-2223/Ag 고온초전도 선재의 변형에 따른 임계전류 특성)

  • 하홍수;오상수;하동우;심기덕;김상철;배성우;권영길;류강식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.810-813
    • /
    • 2000
  • In this study, we fabricated Bi-2223/Ag high temperature superconducting tapes using PIT (Powder-In-Tube) process to apply the superconducting magnet, cable and etc. It's inevitable to deform the superconducting tapes with axial strain for application. Therefore, for the characterization of the strain sensitivity of the superconducting properties, the degradation of Bi-2223/Ag tapes due to axial strain were investigated by measuring the critical current as a function of applied tension strain and external magnetic field. The critical current of Bi-2223/Ag tapes were decreased slightly up to 0.3∼0.4% applied strain but, drastically decreased more than these strains. Superconducting filament cores consisted of brittle ceramic fibers were broken easily by the large strain and current path were decreased simultaneously.

  • PDF

A Comparison Study of Heat Loss Characteristics in Monofilament and Multifilament Superconducting Coils Driven with AC Currents (단일필라멘트와 다중필라멘트 초전도 코일의 교류 전류에 의한 발열 특성 비교 평가)

  • Hwang, S.M.;Kim, K.;Kang, C.S.;Lee, S.J.;Lee, Y.H.
    • Progress in Superconductivity
    • /
    • v.13 no.2
    • /
    • pp.111-116
    • /
    • 2011
  • Since superconducting wires have no resistance, electromagnets based on the superconducting wires produce no resistive heating with DC current as long as the current does not exceed the critical current of the wire. However, unlike resistive wires, superconducting wires exhibit AC heat loss. Embedding fine superconducting filaments inside copper matrix can reduce this AC loss to an acceptable level and opens the way to AC-capable superconducting coils. Here, we introduce an easy and accurate method to measure AC heat loss from sample superconducting coils by measuring changes in the rate of gas helium outflow from the liquid helium dewar in which the sample coil is placed. This method provides accurate information on total heat loss of a superconducting coil without any size limit, as long as the coil can fit inside the liquid helium dewar. With this method, we have evaluated AC heat loss of two superconducting solenoids, a 180-turn solid NbTi wire with 0.127 mm diameter (NbTi coil) and a 100-turn filamented wire with 1.4 mm diameter where 7 NbTi filaments were embedded in a copper matrix with copper to NbTi ratio of 6.7:1 (NbTi-Cu coil). Both coils were wound on 15 mm-diameter G-10 epoxy tubes. The AC heat losses of the NbTi and NbTi-Cu coils were evaluated as $53{\pm}4.7\;{\mu}W/A^2Hzcm^3$ and $0.67{\pm}0.16\;{\mu}W/A^2Hzcm^3$, respectively.

Fabrication of superconducting Joints Between PIT Processed BSCCO 2223 Tapes by Single and Multiple Press & reaction Annealing (고온초전도 BSCCO 2223 선재간의 초전도 접합부 제조연구)

  • Yu, Jae-Mu;Go, Jae-Ung;Jeong, Hyeong-Sik
    • 연구논문집
    • /
    • s.27
    • /
    • pp.175-181
    • /
    • 1997
  • Superconducting joints between Bi-2223/Ag tapes are fabricated by a press & reaction anneal and a multiple press & anneal. The silver sheath was mechanically or chemically removed from one side of each tape without altering the superconducting core. The exposed superconducting core of the two tapes were brought into contact and pressed so as to form a lap joint. The joined tapes were then subjected to a series of different thermomechanical treatments to achieve optimum heat treatment condition. The result from transport measurements shows that critical current ($I_c$) transmitting through joined area reaches 9A, approximately 60% of the current capacity of the tapes themselves. The critical current through joined area was improved by repeated press and reaction annealing. Measurements of the current-voltage relationship were made with several configuration of the voltage probes to characterize the critical current variation and I-V curve along the joint. Also discussed are microstructural aspects of the superconducting joint.

  • PDF

Design and test results of a Rogowski coil for measurement of current distribution characteristics in 4-parallel superconducting coils (사병렬 초전도코일의 전류분류 측정을 위한 Rogowski 코일의 제작 및 특성 실험)

  • Cho, Dae-Ho;Yang, S.E.;Kim, M.J.;Ahn, M.C.;Park, D.K.;Bae, D.K.;Seok, B.Y.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.37-40
    • /
    • 2007
  • Large critical current is one of the prerequisites for the design of superconducting electrical equipments with large power capacity. To enlarge the critical current. multiple parallel connection is inevitable. In multiple parallel superconducting coils. the difference in normal resistance of each shunt leads to unequal current distribution. which may yield burnout. Therefore. uniform current distribution is required for a stable operation of multiple parallel superconducting coils. In this paper, Rogowski coils were fabricated to measure each shunt current of a 4-parallel superconducting coil. Four Rogowski coils were installed at the copper bars, which are used as current leads in superconducting coils. As a result, linearity of the Rogowski coils was ascertained and coefficients of each coil, the ratio of voltage and current, were derived. The coefficients were compared with theoretically calculated values. Based on the coefficients, each shunt current was calculated in a 4-parallel superconducting coil, where uniform current. distribution was confirmed. This paper verified the feasibility of the fabricated Rogowski coils as well as operational stability of the 4-parallel superconducting coil in 77K.

Study of a Superconducting Switch and Superconducting Power Supply for the Charging of Superconducting Magnets (고온초전도자석 충전용 초전도 스위치 및 전원장치에 관한 연구)

  • 배덕권;안민철;김영식;김호민;이찬주;윤용수;이상진;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.318-321
    • /
    • 2002
  • Superconductivity has various applications in the whole industry such as the generation of high magnetic field for medical care and diagnosis, the lossless power transmission, environment-friendly vehicles and clean energy storage systems. This paper deals with the High-Tc superconducting(HTS) power supply using heater-triggered switch for the charging of the superconducting magnets. HTS superconducting power supply consists of two heaters, an electromagnet, and Bi-2223 solenoid and Bi-2223 pancake is used as a superconducting load, similar to real HTS magnet. The timing sequential control of two heaters and an electromagnet is an important factor to generate pumping- current in the Bi-2223 load. The thermal analysis of switching parts of the Bi-2223 solenoid according to the heater input was carried out. Based upon the analysis, the 0.8A of heater current were optimally derived. The maximum pumping current reached 1.7A.

  • PDF

Development of innovative superconducting DC power cable

  • Matsushita, Teruo;Kiuchi, Masaru
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • It is required to reduce the cost of superconducting cable to realize a superconducting DC power network that covers a wide area in order to utilize renewable energy. In this paper a new concept of innovative cable is introduced that can enhance the current-carrying capacity even though the same superconducting tape is used. Such a cable can be realized by designing an optimal winding structure in such a way that the angle between the tape and magnetic field becomes small. This idea was confirmed by preliminary experiments for a single layer model cable made of Bi-2223 tapes and REBCO coated conductors. Experiments of three and four layer cables of practical sizes were also done and it was found that the current-carrying capacity increased as theoretically predicted. If the critical current properties of commercial superconducting tapes are further improved in a parallel magnetic field, the enhancement will become pronounced and this technology will surely contribute to realization of superconducting DC power network.

Effects on Suspension Solution for Electrophoretic Superconducting Thick-film Wire (전기영동 초전도 후막선재의 현탁용매 영향)

  • 소대화;박정철;이영매;조용준;코로보바
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.81-84
    • /
    • 1999
  • For the research of the effects on suspension solution with YBCO and BSCCO for elcectrophoretic deposition to prepare superconducting thick-film wire, it was investigated that the preheating technique for the superconducting powders in vacuum system was used with various solvent solutions of acetone, ethanol, toluene and buthanol for electrophoresis. As a result it was useful to remove the influence of remaining and adsorbed solvent solution which was existed between and on the particle surfaces when the specimens of superconducting wire by electrophoresis were treated in vacuum of 10$\^$-3/ Torr and temperature around 200$^{\circ}C$ in bell-jar system. From the prepared superconducting wire samples, the critical current density, Jc was measured by 4-point prove method in liquid N$_2$ at the value of 10$\^$3/ to 10$\^$4/ A/$\textrm{cm}^2$, respectively, for the YBCO and BSCCO superconducting wires.

  • PDF

AC loss comparison of Bi-2223 and coated conductor HTS tapes under bending

  • Kim, Hae-Joon;Cho, Jeon-Wook;Sim, Ki-Deok;Kim, Jae-Ho;Kim, Seok-Ho;Jang, Hyun-Man;Lee, Soo-Gil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.4
    • /
    • pp.41-45
    • /
    • 2007
  • Superconductor is developed for applications in high-power devices such as power-transmission cables, transformers, motor and generators. In such applications, HTS tapes are subjected to various kinds of stress or strain. AC loss is also important consideration for many large-scale superconducting devices. In the fabrication of the devices, the critical current $(I_c)$ of the high temperature superconductor degrades due to many reasons including the tension applied by bending and thermal contraction. These bending or tension reduces the $I_c$ of superconducting wire and the $I_c$ degradation affects the AC loss of the wire. The $I_c$ degradation and AC loss (self field loss) of Bi-2223 HTS and Coated conductor were measured under tension and bending conditions at 77K and self-field.