• Title/Summary/Keyword: Superconducting transmission

Search Result 191, Processing Time 0.02 seconds

Dependence of superconductivity on the crystallinity of Nb films on Si wafers

  • Choi, Joonyoung;Kim, Chang-Duk;Jo, Younjung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.1-5
    • /
    • 2021
  • Among elemental metals, niobium (Nb) has the highest superconducting transition temperature (Tc) at ambient pressure. Thus, Nb films have been used in superconducting electronics and radio frequency cavity applications. In this study, the depositional factors determining the crystallinity and Tc of Nb films were investigated. An Nb film grown at a sputtering temperature of 240℃ exhibited the maximum crystallinity of Nb and the minimum crystallinity of niobium oxide. X-ray photoelectron spectroscopy confirmed a maximum atomic percent of niobium and a minimum atomic percent of oxygen. A sputtering power of 210 W and a sputtering time of 50 min were the optimal conditions for Nb deposition, and the Tc of the optimized film (9.08 K) was close to that of bulk Nb (9.25 K). Transmission electron microscopy images of the thick film directly confirmed the removal of the typical in-plane compressive strain in the (110) plane caused by residual stress.

Economic analysis of a 22.9 kV HTS power cable and conventional AC power cable for an offshore wind farm connections

  • Jung, Ga-Eun;Dinh, Minh-Chau;Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.60-64
    • /
    • 2018
  • As the offshore wind farms increase, interest in the efficient power system configuration of submarine cables is increasing. Currently, transmission system of the offshore wind farm uses almost AC system. High temperature superconducting (HTS) power cable of the high capacity has long been considered as an enabling technology for power transmission. The HTS cable is a feasible way to increase the transmission capacity of electric power and to provide a substantial reduction in transmission losses and a resultant effect of low CO2 emission. The HTS cable reduces its size and laying sectional area in comparison with a conventional XLPE or OF cable. This is an advantage to reduce its construction cost. In this paper, we discuss the economic feasibility of the 22.9 kV HTS power cable and the conventional AC power cables for an offshore wind farm connections. The 22.9 kV HTS power cable cost for the offshore wind farm connections was calculated based on the capital expenditure and operating expense. The economic feasibility of the HTS power cable and the AC power cables were compared for the offshore wind farm connections. In the case of the offshore wind farm with a capacity of 100 MW and a distance of 3 km to the coast, cost of the 22.9 kV HTS power cable for the offshore wind farm connections was higher than 22.9 kV AC power cable and lower than 70 kV AC power transmission cable.

On the Current Limiting Characteristics and Parameters of Superconducting Fault Current Limiter Introduced to 345kV Electric Power System due to Resistive-Type, Reactive-Type (유도형과 저항형 초전도한류기의 파라메타를 고려한 전력계통도입효과의 분석 및 고찰)

  • 홍원표;김용학;전영환;이승학
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.285-290
    • /
    • 2002
  • Power systems are becoming larger and larger for meeting electric power demand. Therefore, the over-currents resulting from contingencies such short circuits are increasing higher. The Maximum short circuit current of modern power system is becoming so large that circuit breaker are not expected th be able to shut down the current in the future. In order to cut over-currents, a system composed of a superconducting fault current limiter(SFCL) and traditional breaker seems to provide a promising solution for future power operation. In present paper, three line-to-ground fault is assumed to happen at the center of 345kV transmission lines in a large capacity electric power system The superconducting fault current limiter was represented using a commutation type, which consists of a non-inductive superconducting coil and current limiting element(resistor or reactor). The introduction merits of the SFCL were investigated quantitatively by RTDS/EMTDC from the viewpoint of current limiting performance, the prevention of the voltage drop at the load bus and comparison characteristics for two type SFCL. Desired design specification and operation parameters of SFCL were also given qualitatively by the performance evaluation of the two type SFCL in the power system.

  • PDF

Design of Superconducting Elements for the 6.6kV 200A Superconducting Fault Current Limiter (6.6kV 200A 초전도 한류기용 초전도소자 설계)

  • Kang J.S.;LEE B.W.;Park K.B.;Oh I.S.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.518-520
    • /
    • 2004
  • In these days, there is a demand to develop fault current limiters(FCLs) to reduce excessive fault current and protect electrical equipments which are installed in the transmission and distribution power systems. We considered the resistive superconducting FCLs among the various kinds of FCLs. In this study, in order to develop the resistive superconducting FCL of 6.6kV 200A $3\phi$, we designed the new mask pattern for etching YBCO films by means of numerical analysis method, current limiting experiments and visualization of bubbles in films and investigated dielectric performance of the designed mask by using elecrtostatic numerical analysis method and breakdown experiments. We etched YBCO films by using the newly designed mask, connected the etched films in series and in parallel, and designed the 6.6kV resistive SFCL and then we observed the current limiting characteristics of the SFCL.

  • PDF

Analysis of an Active Superconducting Current Controller (ASCC) Considering the Transient Stability and OCR Operation in Transmission and Distribution Systems

  • Gusheh, Ahmad Ghafari;Soreshjani, Mohsen Hosseinzadeh;Rahat, Omid
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.543-550
    • /
    • 2016
  • The Active Superconducting Current Controller (ASCC) is a new type of Superconducting Fault Current Limiters (SFCL) which can limit the fault current in different modes. It also has the particular abilities of compensating active and reactive powers for electrical networks. In this paper, it is confirmed that the performance of ASCC in different operating modes introduces a limiting impedance in series with the network which can even degrade the transient stability and the operation of the Over-Current Relays (OCR) employed in a power system. In addition, the model of a three-phase ASCC is simulated, and the effect of descriptive modes on the current limiting level is investigated. For the transient stability analysis, a single machine-infinite bus system is tested, and the effect of operation modes is studied based on an equal area criterion obtaining the critical time and the critical angle. Modifying the setting parameters of OCR such as time dial and pick-up current, the protective coordination is also studied in different operating modes.

Synthesis of high functional Superconducting Precursor using Organic metal salts method for Electric power transmission (유기금속염을 이용한 고효율 전력 전송용 초전도 전구체 합성)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.270-271
    • /
    • 2005
  • A high Tc superconducting with a nominal composition of $Bi_2Sr_2Ca_2Cu_3O_Y$ was prepared by the citarte method. The solid precursor produced by the dehydration of the gel at $120^{\circ}C$ for 12h is not in the amorphous state as expected but in a crystalline state. X-ray diffraction peaks of nearly the same angular position as the peaks of high Tc phase were observed in the precursor. After pyrolysis at $400^{\circ}C$ and calcination at $840^{\circ}C$ for 4h, the (001)peak of the high Tc phase was cleary observed. Experimental results suggest that the intermediate phase formed before the formation of the superconducting phase may be the most important factro in determining whether it is easy to form the high Tc phase or not. because the nucleation barriers of the two superconducting phase may be altered by the variation of the crystal structures of those intermediate phase.

  • PDF

Conceptual Design of HTS Power Gable (고온초전도 전력케이블의 기념설계)

  • Cho, J.W.;Seong, K.S.;Kim, H.J.;Lee, E.Y.;Ryu, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1626-1628
    • /
    • 1998
  • In reccent years the large capacity underground power transmission systems have been required gradually with the increasing demand of electric power, the increasing electric power system and the environmental limitations of an overhead transmission line in the city. But it is difficult to get the space for the underground power transmission lines because of complicated distributions of underground public facilities. But as the superconducting power cables have the large power transmission capacity, the high power transmission density, and low loss characteristics in comparison with a conventional cable, the necessity for their development are increasing. In this paper, the results of the conceptual design of HTS power cable is described.

  • PDF

A Study on Development of Superconducting Wires for a Fault Current Limiter (한류기용 초전도 선재개발에 관한 연구)

  • Hwang, Kwang-Soo;Lee, Hun-Ju;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.279-290
    • /
    • 2022
  • A superconducting fault current limiter(SFCL) is a power device that exploits superconducting transition to control currents and enhances the flexibility, stability and reliability of the power system within a few milliseconds. With a high phase transition speed, high critical current densities and little AC loss, high-temperature superconducting (HTS) wires are suitable for a resistive-type SFCL. However, HTS wires due to the lack of optimization research are rather inefficient to directly apply to a fault current limiter in terms of the design and capacity, for the existing method relied the characteristics. Therefore, in order to develop a suitable wire for an SFCL, it is necessary to enhance critical current uniformity, select optimal stabilizer materials and conducted research on the development of uniform stabilizer layering technology. The high temperature superconducting wires manufactured by this study get an average critical current of 804 A/12mm-width at the length of 710m; therefore, conducted research was able to secure economic performance by improving efficiency, reducing costs, and reducing size.

Efficiency Analysis of Magnetic Resonance Wireless Power Transmission using Superconductor Coil According to the Changing Position of Transmission and Receiving Coils (초전도 코일을 적용한 자기공명방식 무선전력전송의 송·수신 코일 배열에 따른 효율 분석)

  • Kang, Min-Sang;Choi, Hyo-Sang;Jeong, In-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.776-779
    • /
    • 2014
  • In this paper, we analyzed the efficiency of magnetic resonance wireless power transmission (WPT) using superconductor coil according to the changing position of transmission and receiving coils. We implemented a WPT system using a magnetic resonance at a frequency of 63.1 kHz. Transmission and receiving coils using superconductor coil were wound on a spiral manner of diameter 100mm. For comparison, transmission and receiving coils using normal conductor coil were designed under the same condition. At a distance of 50mm, we measured efficiency when transmission-receiving coils were matched 25%, 50%, 75% and 100%. When a superconductor coil was applied to the transmission and receiving units, efficiency of WPT was very high. In addition, in the case of the superconducting transmission-receiving coils, when coils matched 100% the efficiency was 30% and matched 25% the efficiency was 8%.

Characteristics of Wireless Power Transmission applying the superconducting coil (초전도 코일을 적용한 WPT 특성)

  • Jeong, In-Sung;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.762-766
    • /
    • 2013
  • Interest in Wireless Power Transmission (WPT) technology has been increasing worldwide recently. This trend is proved by commercialized products such as electric toothbrush, wireless razor, and wireless charger for mobile phone battery. Studies for enhancing the applicability of the technology have been continuously conducted. Currently the WPT technology is based on the technologies using microwave, inductively coupling, and magnetic resonance. In the meantime, development of the microwave-based WPT faces difficulty due to health hazards involved in the technology, and application of the WPT technology using inductively coupling is restricted by area due to the problem of transmission length. In comparison, the WPT technology using magnetic resonance draws attention in terms of efficiency and transmission length. In this study, the sending coil based on the WPT technology using magnetic resonance system was replaced with an HTS coil to enhance transmission efficiency. Since the HTS coil has a zero resistance, power transmission loss can be minimized. At the same time, size of the current density could be increased to 100 times or more than typical coils. In addition, through impedance matching of LC device, maximal resonance properties were induced and consequently, frequency selection quality characteristics or Q was enhanced. As a result, the WPT type using the HTS coil showed a longer transmission length and better transmission efficiency compared with the WPT type using typical coils.