• Title/Summary/Keyword: Supercharging

Search Result 27, Processing Time 0.024 seconds

Vascular Augmentation in Renal Transplantation: Supercharging and Turbocharging

  • Jeong, Euicheol C.;Hwang, Seung Hwan;Eo, Su Rak
    • Archives of Plastic Surgery
    • /
    • v.44 no.3
    • /
    • pp.238-242
    • /
    • 2017
  • The most common anatomic variant seen in donor kidneys for renal transplantation is the presence of multiple renal arteries, which can cause an increased risk of complications. Accessory renal arteries should be anastomosed to the proper source arteries to improve renal perfusion via the appropriate vascular reconstruction techniques. In microsurgery, 2 kinds of vascular augmentation methods, known as 'supercharging' and 'turbocharging,' have been introduced to ensure vascular perfusion in the transferred flap. Supercharging uses a distant source of the vessels, while turbocharging uses vascular sources within the same flap territory. These technical concepts can also be applied in renal transplantation, and in this report, we describe 2 patients who underwent procedures using supercharging and turbocharging. In one case, the ipsilateral deep inferior epigastric artery was transposed to the accessory renal artery (supercharging), and in the other case, the accessory renal artery was anastomosed to the corresponding main renal artery with a vascular graft (turbocharging). The transplanted kidneys showed good perfusion and proper function. No cases of renal failure, hypertension, rejection, or urologic complications were observed. These microsurgical techniques can be safely utilized for renal transplantation with donor kidneys that have multiple arteries with a lower complication rate and better outcome.

Supercharging Characteristics of Roots Type Supercharger (루츠식 수퍼차저의 과급 특성)

  • 이창식;이기형;최규훈;노석홍;전문수;김대식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.181-186
    • /
    • 1999
  • The objective of present work is to investigate the performance characteristics of three-lobe Roots type supercharger for the applications of low-compression and high-expansion ration gasoline engine. A performance test was conducted to obtain the drive power, volumetric efficiency, adiabatic efficiency and the influence of performance factors of supercharger . In order to analyze the supercharging characteristics, the experiments are made on operating parameters such as the supercharger speed, pressure ration and inlet temperature on the supercharging performance of the Roots type supercharger . Based on experimental results, the drive power and flow rate of supercharger increased with supercharger speed.

  • PDF

Effect of EGR and Supercharging on the Diesel HCCI Combustion (디젤 예혼합 압축착화 엔진에서 배기가스 재순환과 과급의 영향)

  • Park, Se-Ik;Kook, Sang-Hoon;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.58-64
    • /
    • 2006
  • Homogeneous charge compression ignition(HCCI) combustion is an advanced technique for reducing the hazardous nitrogen oxide(NOx) and particulate matter(PM) in a diesel engine. NOx could be reduced by achieving lean homogeneous mixture resulting in combustion temperature. PM could be also reduced by eliminating fuel-rich zones which exist in conventional diesel combustion. However previous researches have reported that power-output of HCCI engine is limited by the high intensive knock and misfiring. In an attempt to extend the upper load limit for HCCI operation, supercharging in combination with Exhaust Gas Recirculation(EGR) has been applied: supercharging to increase the power density and EGR to control the combustion phase. The test was performed in a single cylinder engine operated at 1200 rpm. Boost pressures of 1.1 and 1.2 bar were applied. High EGR rates up to 45% were supplied. Most of fuel was injected at early timing to make homogeneous mixture. Small amount of fuel injection was followed near TDC to assist ignition. Results showed increasing boost pressure resulted in much higher power-output. Optimal EGR rate influenced by longer ignition delay and charge dilution simultaneously was observed.

A DFT Study on the Polarizability of Di-substituted Arene (o-, m-, p-) Molecules used as Supercharging Reagents during Electrospray Ionization Mass Spectrometry

  • Abaye, Daniel A.;Aniagyei, Albert;Adedia, David;Nielsen, Birthe V.;Opoku, Francis
    • Mass Spectrometry Letters
    • /
    • v.13 no.3
    • /
    • pp.49-57
    • /
    • 2022
  • During electrospray ionization mass spectrometry (ESI-MS) analysis of proteins, the addition of supercharging agents allows for adjusting the maximal charge state, affecting the charge state distribution, and increases the number of ions reaching the detector thus, improving signal detection. We postulate that in di-substituted arene isomers, molecules with higher polarizability values should generate greater interactions and hence elicit higher signal intensities. Polarizability is an electronic parameter which has been demonstrated to predict many chemical interactions. Many properties can be predicted based on charge polarization. Molecular polarizability is a vital descriptor for explaining intermolecular interactions. We employed DFT (density functional/Hartree-Fock hybrid model, B3LYP)-derived descriptors and computed molecular polarizability for ten disubstituted arene reagents, each set made up of three (ortho, meta, para) isomers, with reported use as supercharging reagents during ESI experiments. The atomic electronic inputs were ionization potential (IP), electron affinity (EA), electronegativity (𝛘), hardness (η), chemical potential (µ), and dipole moment (D). We determined that the para isomers showed the highest polarizability values in nine of the ten sets. There was no difference between the ortho and meta isomers. Polarizability also increased with increasing complexity of the substituents on the benzene ring. Polarizability correlated positively with IP, EA, 𝛘, η, and D but correlated negatively with chemical potential. This DFT study predicts that the para isomers of di-substituted arene isomers should elicit the strongest ESI responses. An experimental comparison of the three isomers, especially of larger supercharging molecules, could be carried out to establish this premise.

Reconstruction of the Soft Tissue Defect of the Lower Leg by Distally Based Superficial Sural Artery Fasciocutaneous Island Flap Using Supercharged Vein (원위기저 도서형 천비복동맥 근막피판으로 하지 재건 시 과급정맥문합의 이용)

  • Ha, Young In;Choi, Hwan Jun;Choi, Chang Yong;Kim, Yong Bae
    • Archives of Plastic Surgery
    • /
    • v.35 no.2
    • /
    • pp.208-213
    • /
    • 2008
  • Purpose: Distally based superficial sural artery island flap has some disadvantages such as postoperative flap edema, congestion, and partial necrosis of the flap margin. Venous congestion is an area of considerable concern in distally based superficial sural artery fasciocutaneous flap and is one of the main reasons for failure, particularly when a large flap is needed. However, we could decrease these disadvantages by means of venous superdrainage. Methods: From June of 2006 to June of 2007, a total of two patients with soft tissue defects of lower one third of the leg underwent venous supercharging distally based superficial sural artery island flap transfer. The distal pivot point of this flap was designed at septocutaneous perforator from the peroneal artery of the posterolateral septum, which was 5 cm above the tip of the lateral malleolus. Briefly, this technique is performed by anastomosing the proximal end of the lesser saphenous vein and collateral vein to any vein in the area of the recipient defect site. Results: No venous congestion was noted in any of the two cases. No other recipient or donor-site complications were observed, except for minor wound dehiscence in one case. In 3 to 6 months follow-up, patients had minor complaints about lack of sensation in the lateral dorsal foot. Conclusion: The peroneal artery perforator is predictable and reliable for the design of a distally based superficial sural artery island flap. Elevation of the venous supercharging flap is safe, easy, and less time consuming. In conclusion, the venous supercharging distally based superficial sural artery island flap offers an alterative to free tissue transfer for reconstruction of the lower extremity.

Experimental Study on Comparison of Flame Propagation Velocity for the Performance Improvement of Natural Gas Engine

  • Chung Jin Do;Jeong Dong Soo
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • Natural gas possesses several characteristics that make it desirable as an engine fuel; 1)lower production cost, 2)abundant commodity and 3)cleaner energy source than gasoline. Due to the physics characteristics of natural gas, the volumetric efficiency and flame speed of a natural gas engine are lower than those of a gasoline engine, which results in a power loss of $10-20{\%}$ when compared to a normal gasoline engine. This paper describes the results of a research to improve the performance of a natural gas engine through the modification and controls of compression ratio, air/fuel ratio, spark advance and supercharging and method of measuring flame propagation velocity. It emphasizes how to improve the power characteristics of a natural gas engine. Combustion characteristics are also studied using an ion probe. The ion probe is applied to measure flame speed of gasoline and methane fuels to confirm the performance improvement of natural gas engine combustion characteristics.

A Study on Engine Performance at the Intake Air Compensation by Supercharging in the Low Speed Diesel-Atkinson Cycle (과급에 의한 흡입공기 보상 시 저속 디젤-아트킨슨사이클에서 엔진성능에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1009-1015
    • /
    • 2011
  • In this study, in the high expansion cycle was conduced by variable valve timing system composition to close intake valve late, and in the intake air reduction on the low compression was solved by supercharging pressure. In this wise, by constituting Diesel-Atkinson cycle, this study looked into a possibility of thermal efficiency improvement. As a result, there was improvement in thermal efficiency and output in a whole range of closing timing from ABDC $40^{\circ}$ to ABDC $80^{\circ}$. However, after ABDC $70^{\circ}$ of closing timing, the thermal efficiency increase was getting smaller. As the result of the study, the optimum intake valve closing timing was about ABDC $70^{\circ}$, high loading territory of engine was more effective than low loading territory, and engine operation in middle loading territory was stable. At this time, brake thermal efficiency was 12.5% higher than ordinary engine on average.

A Study About the Effect of EGR Ratio on DME HCCI Combustion Process (EGR 율이 DME HCCI 엔진연소과정에 미치는 영향에 관한 연구)

  • Lim, Ocktaeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.879-886
    • /
    • 2013
  • This study aims to provide helpful suggestions for understanding the effect of high EGR on DME HCCI combustion. This study determined which between oxygen partial pressure and oxygen concentration was the main factor affecting the LTHR heating ratio. Furthermore, EGR and the supercharging effect were investigated. To define the parameters for the EGR ratio and supercharging pressure, a numerical analysis of the chemical reaction was conducted under the following conditions: (1) variation of EGR ratio, oxygen concentration, and oxygen content; (2) variation of oxygen partial pressure while the oxygen concentration was almost constant; and (3) variation of oxygen concentration while oxygen partial pressure was constant with EGR and supercharging. The results show that an increase in EGR reduces the combustion duration. On the other hand, an increase in boost pressure increases the combustion duration. Finally, the EGR and boost pressure affect the amount of increase in LTHR.

Reconstruction of the Soft Tissue Defect of the Finger Using Digital Island Flap with Supercharged Vein (손가락섬피판으로 손가락 연조직 재건시 과급정맥문합)

  • Choi, Hwan Jun;Kim, Nam Joong;Choi, Chang Yong
    • Archives of Plastic Surgery
    • /
    • v.36 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • Purpose: The heterodigital or homodigital artery island flap is a popular method of reconstruction for finger defects. Sometimes, digital artery island flap has some disadvantages such as postoperative flap edema, congestion, and partial necrosis of the flap margin. However, we could decrease these disadvantages by means of venous superdrainage. The aim of this study is to report usefulness and postoperative results of venous supercharging digital artery island flaps for finger reconstruction. Methods: From March of 2005 to March of 2008, a total of eight patients with soft tissue defects of the finger underwent venous supercharging digital island flap transfer. Briefly, the flap is harvested along with dorsal vein that is then anastomosed to a recipient vein in an end - to - end fashion, after flap transfer and insetting. Using this technique, eight patients were operated on, ranging in age 23 to 52 years. Results: All the flaps survived with a success rate of 100 percent, thus fully satisfying the reconstructive requirements. No postoperative flap congestion was recognized, obviating the need to take any measures for venous engorgement, such as suture removal. Among 8 cases, it was possible to make an long - term and follow - up observation more than 6 months. In these cases, the fact that light touches and temperature sensations can be detected in all the flaps. Cold intolerance and hyperesthesia were not seen in our series. Conclusion: Providing good harmony with conventional methods and microsurgery, inclusion of a vein with the heterodigital and homodigital artery island flap allows a more reliable and safer reconstructive choice for finger defects. The venous supercharged island flap is a reliable flap with a consistent arterial structure, and with its augmented venous drainage, it is more reliable, providing single - stage reconstruction of adjacent finger defects, including the fingertip.