• 제목/요약/키워드: Supercavitating projectile

검색결과 4건 처리시간 0.019초

초공동(超空洞) 하의 수중 주행체 캐비데이터 형상최적설계 (Shape Optimization of Cavitator for a Supercavitating Projectile Underwater)

  • ;최주호
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1566-1573
    • /
    • 2004
  • When a projectile travels at high speed underwater, supercavitating flow arises, in which a huge cavity is generated behind the projectile so that only the nose, i.e., the cavitator, of the projectile is wetted, while the rest of it should be surrounded by the cavity. In that case, the projectile can achieve very high speed due to the reduced drag. Furthermore if the nose of the body is shaped properly, the attendant pressure drag can be maintained at a very low value, so that the overall drag is also reduced dramatically. In this study, shape optimization technique is employed to determine the optimum cavitator shape for minimum drag, given certain operating conditions. Shape optimization technique is also used to solve the potential flow problem fur any given cavitator, which is a free boundary value problem having the cavity shape as unknown a priori. Analytical sensitivities are derived for various shape parameters in order to implement a gradient-based optimization algorithm. Simultaneous optimization technique is proposed for efficient cavitator shape optimization, in which the cavity and cavitator shape are determined in a single optimization routine.

초공동(超空洞) 하의 수중 주행체 캐비테이터 형상최적설계 (Shape Optimization of Cavitator for a Supercavitating Projectile Underwater)

  • 최주호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.82-85
    • /
    • 2008
  • 수중에서 발사체가 고속으로 주행할 때 발사체의 머리 즉, 캐비테이터 만이 물과 접촉한 상태에서 커다란 공동이 발생하여 몸체 전체를 뒤덮는 초공동현상이 발생한다. 초공동 상태에서는 발사체는 저항이 감소되어 매우 빠른 속도를 낼 수 있게 된다. 더욱이 캐비테이터가 적합한 형상을 가지게 되면 매우 낮은 압력저항을 유지하고 전체적인 저항도 획기적으로 줄일 수 있기 때문에 본 연구에서는 주어진 작용환경 하에서 저항을 최소화 하기위한 최적의 캐비테이터 형상최적설계 문제를 고려하였다. 그리고 효율적인 캐비테이터 형상최적화를 위해 공동과 캐비테이터 형상을 하나의 죄적화로 변환한 동시최적화기법을 수행하였다.

  • PDF

초공동(超空洞) 하의 수중 주행체 캐비테이터 형상최적설계 (Shape Optimization of Cavitator for a Supercavitating Projectile Underwater)

  • 최주호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1876-1881
    • /
    • 2003
  • When a projectile travels at high speed underwater, supercavitating flow arises, in which a huge cavity is generated behind the projectile so that only the nose, i.e., the cavitator, of the projectile is wetted, while the rest of it should be surrounded by the cavity. In that case, the projectile can achieve very high speed due to the reduced drag. Furthermore if the nose of the body is shaped properly, the attendant pressure drag can be maintained at a very low value, so that the overall drag is also reduced dramatically. In this study, shape optimization technique is employed to determine the optimum cavitator shape for minimum drag, given certain operating conditions. Shape optimization technique is also used to solve the potential flow problem for any given cavitator, which is a free boundary value problem having the cavity shape as unknown a priori. Analytical sensitivities are derived for various shape parameters in order to implement a gradient-based optimization algorithm. Simultaneous optimization technique is proposed for efficient cavitator shape optimization, in which the cavity and cavitator shape are determined in a single optimization routine.

  • PDF

Influence of head structure on hydrodynamic characteristics of transonic motion projectiles

  • Wang, Rui;Yao, Zhong;Li, Daqin;Xu, Baocheng;Wang, Jiawen;Qi, Xiaobin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.479-490
    • /
    • 2020
  • The hydrodynamic characteristic of transonic motion projectiles with different head diameters are investigated by numerical simulation. Compressibility effect in liquid-phase water are modeled using the Tait state equation. The result shows that with increasing of velocity the compression waves transfer to shock waves, which cause the significant increasing of pressure and decreasing the dimensions of supercavities. While the increasing of head diameter, the thickness, the vapor volume fraction and the drag coefficient of supercavities are all enhanced, which is conducive to the stability of transonic-speed projectiles. The cavity dynamics of the different head projectiles are compared, and the results shows when Mach number is in high region, the truncated cone head projectile is enveloped by a cavity which results in less drag and better stability.