• Title/Summary/Keyword: Super-Tall Buildings

Search Result 103, Processing Time 0.025 seconds

Stack Effect Guidelines for Tall, Mega Tall and Super Tall Buildings

  • Simmonds, Peter;Zhu, Rui
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.323-330
    • /
    • 2013
  • The ASHRAE Technical Committee for Tall Buildings, TC 9.12, has defined a tall building as one whose height is greater than 300 feet (91m). Since the publication of the HVAC Design Guide for Tall Commercial Buildings in 2004, there were only about 300 buildings taller than 200 meters; this number has risen to 600 in 2010 and the prediction 765 buildings taller than 200 meters in 2012. There has also been an introduction of two new classes of tall buildings: ${\bullet}$ Mega tall, which are buildings taller than 300 m, and ${\bullet}$ Super tall, which are buildings taller than 600 m. The effect of ambient air temperature over the height of buildings, especially Mega tall and Super tall buildings. The ambient climatic conditions vary with altitude and these changes in ambient conditions can seriously affect load calculations and performance of super and mega tall buildings. This paper presents revised calculations for stack effect for Tall, Mega Tall and Super tall Buildings.

Effects of Vertical Meteorological Changes on Heating and Cooling Loads of Super Tall Buildings

  • Song, Doosam;Kim, Yang Su
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.81-85
    • /
    • 2012
  • Vertical meteorological conditions encountered by super tall buildings, such as wind speed, temperature and humidity, vary due to their height. Therefore, it is necessary to consider these environmental changes to properly estimate the heating and cooling loads, and to minimize the energy demands for HVAC in super tall buildings. This paper aims to analyze how vertical meteorological changes affect heating and cooling loads of super tall buildings by using numerical simulation. A radiosonde, which observes atmospheric parameters of upper air such as wind speed, wind direction, temperature, relative humidity and pressure, was used to provide weather data for the building load simulation. A hypothetical super tall building was used for the simulation to provide quantified characteristics of the heating and cooling loads, comparing the lower, middle and upper parts of the building. The effect of weather data on the heating and cooling loads in super tall building was also discussed.

A Study on the Typological Classification of Super-tall Building and Present State of Masterplan Planning Factor in the Site (초고층건축물의 유형화와 부지 내 배치계획요소 계획현황에 관한 연구)

  • Yang, Ki In;Bang, Ki Jin;Je, Hae Seong
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.71-76
    • /
    • 2010
  • Recently, the construction and plan of super-tall building is attention link of new town development or urban core regeneration. Super-tall Buildings have many advantages and a lot of affects in urban contexts. Also, construction of super-tall building is will be able to social problem like urban core's decline, loss of openspace, incompatible urban scape, traffic congestion of urban core. But, compares to super-tall buildings affects in urban contexts, there was not extra ordinary study about super-tall building by the urban scale approaches. Therefore, need about study materplan planning of the site which is made to meet super-tall building and urban contexts. There are two main processes in this study. First, to analyze the factors affect to masterplan planning of the super-tall building's site. Through the analyzed factors, classify type of super-tall buildings and identify the type's state. Second, to classify and set the elements of masterplan planning factor in the site. Identify the masterplan planning factor's state by deployment materplan planning factor set the current applied to the constructed super-tall buildings. Through this process, identified the recent trend and providied the basic elements of materplan planning of super-tall building's site.

Wind load estimation of super-tall buildings based on response data

  • Zhi, Lun-hai;Chen, Bo;Fang, Ming-xin
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.625-648
    • /
    • 2015
  • Modern super-tall buildings are more sensitive to strong winds. The evaluation of wind loads for the design of these buildings is of primary importance. A direct monitoring of wind forces acting on super-tall structures is quite difficult to be realized. Indirect measurements interpreted by inverse techniques are therefore favourable since dynamic response measurements are easier to be carried out. To this end, a Kalman filtering based inverse approach is developed in this study so as to estimate the wind loads on super-tall buildings based on limited structural responses. The optimum solution of Kalman filter gain by solving the Riccati equation is used to update the identification accuracy of external loads. The feasibility of the developed estimation method is investigated through the wind tunnel test of a typical super-tall building by using a Synchronous Multi-Pressure Scanning System. The effects of crucial factors such as the type of wind-induced response, the covariance matrix of noise, errors of structural modal parameters and levels of noise involved in the measurements on the wind load estimations are examined through detailed parametric study. The effects of the number of vibration modes on the identification quality are studied and discussed in detail. The made observations indicate that the proposed inverse approach is an effective tool for predicting the wind loads on super-tall buildings.

Shape Effects on Aerodynamic and Pedestrian-level Wind Characteristics and Optimization for Tall and Super-Tall Building Design

  • Kim, Yong Chul;Xu, Xiaoda;Yang, Qingshan;Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.235-253
    • /
    • 2019
  • This paper reviews shape optimization studies for tall and super-tall building design. Firstly, shape effects on aerodynamic and response characteristics are introduced and discussed. Effects of various configurations such as corner modifications, taper, setback, openings, and twists are examined. Comprehensive comparative studies on various configurations including polygon building models, and composite type building models such as corner-cut and taper, corner-cut and taper and helical, and so on, are also discussed under the conditions of the same height and volume. Aerodynamic characteristics are improved by increasing the twist angle of helical buildings and increasing the number of sides of polygon buildings, but a twist angle of $180^{\circ}$ and a number of sides of 5 (pentagon) seem to be enough. The majority of examined configurations show better aerodynamic characteristics than straight-square. In particular, composite type buildings and helical polygon buildings show significant improvement. Next, shape effects on pedestrian-level wind characteristics around tall and super-tall buildings are introduced and discussed. Corner modification buildings show significant reductions in speed-up areas. On the other hand, setback and tapered models with wider projected widths near the ground show adverse effects on pedestrian-level wind characteristics.

Study on Structural Efficiency of Super-Tall Buildings

  • Jianlong, Zhou;Lianjin, Bao;Peng, Qian
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.185-190
    • /
    • 2014
  • Based on a 405m high super-tall building, the influence of outriggers, different shapes and layouts of structural plane and elevation on structural efficiency under lateral forces is studied in this paper. A calculation formula concerning the structural efficiency is given. The study shows that structural efficiency can be improved by triangulating the plane shape, using mega columns, the peripherization of the plane layout, tapering the elevation shape and setting bracing structure in the elevation. The arrangement of outriggers between the core tube and flange frame can reduce the shear lag effect in order to improve structural efficiency. The essence of improving structural efficiency of super-tall buildings is to maximize the plane bending stiffness and to make its deformation approach to plane section assumption.

A Study on the Convergence Relativity of the Combining Curved Forms of Tall Buildings (초고층빌딩의 비정형 곡면형태 조합 및 복합관계에 관한 연구)

  • Park, Sang-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.190-199
    • /
    • 2020
  • Globally, more super-tall buildings tend to be constructed competitively in the social and economic foundations. In the circumstance, this study is aimed at establishing a paradigm of super-tall buildings in terms of their various forms. Symbolizing a city or state, super-tall buildings not only are used as resources of tourism, but play an important role as a characteristic landmark. Therefore, it is necessary to find a curved form for a futuristic perspective. The purpose of this study is to infer the convergence relativity of curved forms among complex and diverse unstructured construction forms. This study used as subjects 50 super-tall buildings among the ranking data selected Council on Tall Buildings and Urban Habitat (CTBUH) in order for the basis of constructability related to actual design, rather than the way of recognizing a formative type, in the classification of curved forms into regularized surfaces, developable surfaces, and double-curved surfaces. The results of this study are presented as follows. This classification can be used as a fundamental material which is reasonably involved in the design process pursuing diverse curved surfaces in terms of design of tall buildings.

The Rational Optimization and Evolution of the Structural Diagonal Aesthetic in Super-Tall Towers

  • Besjak, Charles;Biswas, Preetam;Fast, Tobias
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.305-318
    • /
    • 2016
  • In the design of super-tall towers, engineers often find the conventional frame systems used in countless buildings in the past decades incapable of providing the required form, performance and constructability demanded by super-tall heights. The strength of the diagrid as a structural system in high-rise towers is the total flexibility it affords the designer as an adaptable, efficient and buildable scheme. Using fundamental engineering principles combined with modern computational tools, designers can take minimum load path forms to create rationalized diagrid geometries to create optimized, highly efficient towers. The use of diagrid frames at SOM has evolved as a structural typology beginning with the large braced frames on the John Hancock Center and continued in modern applications proving to be a powerful system in meeting the demands of supertall buildings.

A Fundamental Study on Applying BIM to Power Manage System of Super Tall Buildings (초고층 건축물 전력관리 시스템에 BIM 적용을 위한 기초적 연구)

  • Jo, Chan-Won;Kwon, Soon-Ho;Lee, Woon-Jae;Roh, Tae-Im;Ock, Jong-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.140-148
    • /
    • 2012
  • This study aims to provide power monitoring system for super tall buildings with 3D BIM (Building Information Modeling) technology. In order to realize this subject, standard specifications for BIM objects and attributes were studied through analyzing processes and elements of electrical utilities for power management systems applied for super tall buildings. These standard BIM specifications could be used by designers, contractors and facility operators, and thus could be helpful to realize BIM information sharing between multiple disciplines and construction phases. And further study has been suggested to develop standard specification and applications from this study.

Effects of Number of Sides on Aerodynamic Characteristics of Super-Tall Buildings (단면의 변의 수가 초고층 건물의 공력특성에 미치는 영향)

  • Kim, Yong-Chul;Bandi, Eswara Kumar;Tamura, Yukio;Yoshida, Akihito;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.83-90
    • /
    • 2013
  • A series of wind tunnel tests were conducted on 7 super-tall buildings with various polygon cross-sections, including triangle, square, pentagon, hexagon, octagon, dodecagon, and circular. The primary purpose of the present study is to investigate the effect of increasing number of sides on aerodynamic characteristics for super-tall buildings. Wind tunnel tests were conducted under the turbulent boundary layers whose power-law exponent is 0.27. Fluctuating wind pressures from more than 200 pressure taps were recorded simultaneously, and time series of overturning moments were calculated considering tributary area of each pressure tap. The results show that the overturning moment coefficients and the spectral values decrease with increasing number of sides, and the largest mean and fluctuating overturning moments were found for the triangular super-tall building, and the largest spectral values were found for the square super-tall building. The analysis should be conducted more in detail, but currently it can be roughly said that there seems to be a little differences in the aerodynamic characteristics for the super-tall buildings whose number of sides is larger than 5 or 6.