• 제목/요약/키워드: Super low temperature

검색결과 121건 처리시간 0.026초

Processing and Mechanical Properties of Ni-Cr and Ni-Cr-Al Foams by Pack-Cementation

  • ;최희만
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.19.1-19.1
    • /
    • 2009
  • Open-cell Ni-Cr and Ni-Cr-Al(with gamma/gamma prime microstructure typical of Bi-base super alloys) foams are manufactured by pack-cementation at $1000{\boxplus}$degrees C, followed by homogenization at $1200{\boxplus}C$. The resulting alloyed foams retain the low relative densities (less than 3.5 wt.%). The oxidation behavior of Ni-Cr foams turns out to be identical to that of bulk Ni-Cr alloys, after taking into account the foam's higher surface area. The room-temperature compressive behavior of the Ni-Cr and Ni-Cr-Al is compared to model predictions. Additionally, the foam creep behavior, measured between 680 and $825{\boxplus}C$ in the stress range of 0.1-0.3 MPa, compared to two analytical models, namely strut compression and strut bending as high-temperature deformation modes.

  • PDF

혼합비에 따른 선형저밀도 폴리에틸렌과 에틸렌비닐아세테이트 블랜드의 전기적 특성 (Electrical Characteristic of Blend with LLDPE and EVA Due to Mixing Ratio)

  • 신종열;이충호;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제14권6호
    • /
    • pp.525-532
    • /
    • 2001
  • In this paper, physical properties and electrical characteristics of linear low density polyethylene(LLDPE) films blended with ethylene vinyl acetate(EVA), containing polar groups within it, were investigated to improve defects of polyethylene(PE) such like space charge accumulation and tree growth. Blending method changes super-structure of LLDPE, having a great influence on electrical characteristics. For analysis of physical properties, FTIR, XRD and DSC methods were executed, and for electrical characteristics, volume resistivity and dielectric strength were measured with the varying temperature. From the results, it is confirmed that bled specimens tend to be safe to varying temperature, and specially of 70:30 and 50:50 have a good performance.

  • PDF

동절기 초기양생방법 및 혼화제 종류에 따른 콘크리트의 강도발현특성에 관한 실험적 연구 (An Experimental Study on the Strength Properties of Concrete for Curing Method at Early Age and kinds of Admixture in Winter)

  • 최성우;이민호;반성수;최봉주;유득현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.183-188
    • /
    • 2002
  • When Concrete work during winter is placed, it has anxiety that concrete freeze at low temperature. As concrete's freezing cause reduction of durability, it is necessary for mixing to pay attention to Air content and W/C ratios. Accordingly, in this study, we set up three series and evaluate a frost-resistance of concrete with admixture, like fly-ash and blast-furnace slag, for early curing method and types of chemical admixture..The study is composed as; I series : Analysis for early curing method and types of chemical admixture in laboratory II series : Analysis for early curing method and types of chemical admixture in batcher plant and measured concrete' temperature. The result of this study, it was more effective the use of super-plasticizers than air entraining agent.

  • PDF

발전 보일러용 크롬 저합금강의 용접후열처리 특성 (Characteristics of the Post-Weld Heat Treatment of Chrome Low Alloy Material for a Power Plant Boiler)

  • 위재훈;문승재;유호선
    • 플랜트 저널
    • /
    • 제6권4호
    • /
    • pp.56-62
    • /
    • 2010
  • This study investigated characteristics of the post-weld heat treatment of SA213-T23, which was developed for water wall of the ultra super critical power boiler. The temperature of post weld heat treatment should be $730^{\circ}C$ or higher to reduce hardness of the deposit metal and heat affected zone. Coincidently, the temperature should remain $760^{\circ}C$ or lower to prevent hardness of the base metal from dropping. Hardness decline of deposit metal was trivial according to time when the holding time of heat treatment at $740^{\circ}C$ of post-weld heat treatment gradually increased from initial 15 minutes.

  • PDF

Analysis and hazard evaluation of heat-transfer fluids for the direct contact cooling system

  • Hong, Joo Hi;Lee, Yeonhee;Shin, Youhwan;Karng, Sarngwoo;Kim, Youngil;Kim, Seoyoung
    • 분석과학
    • /
    • 제19권4호
    • /
    • pp.323-332
    • /
    • 2006
  • This paper discusses several low-temperature heat-tranfer fluids, including water-based inorganic salt, organic salt, alcohol/glycol mixtures, silicones, and halogenated hydrocarbons in order to choose the best heat-transfer fluid for the newly designed direct contact refrigeration system. So, it contains a survey on commercial products such as propylene glycol and potassium formate as newly used in super market and food processing refrigeration. The stability of commercial fluids at the working temperature of $-20^{\circ}C$ was monitored as a function of time up to two months. And organic and inorganic compositions of candidate fluids were obtained by analytical instruments such as ES, XRF, AAS, ICP-AES, GC, and GC-MS. Analysis results indicate that commercial propylene glycol is very efficient and safe heat transfer fluids for the direct cooling system with liquid phase.

시멘트 유동성과 물성에 미치는 영향인자에 관한 연구 (A Study of Effecting Factor in the Reology and Physical Properties of Cements)

  • 엄태선;최상흘
    • 한국세라믹학회지
    • /
    • 제34권10호
    • /
    • pp.1027-1036
    • /
    • 1997
  • The reology and several physical properties of cements are studied by varying the different mineral composition and particle size distribution(PSD) of cements with closed circuit ball mill for high workability, low heat of hydration, and high strength. In this study, we found that the workability of concretes is related to the viscosity of cement, and affects to strength. Here, this workability is affected by mineral composition (C3A) and the PSD. Especially, rosin-rammer index and 44${\mu}{\textrm}{m}$ residue in the PSD of cements are affected to water demand, casting property, slump loss, strength of cements. From the above results, the conditions of cement for high workability, low heat of hydration and high strength are to use low C3A clinker, 5-10% slag addition, and to grind cement below 0.7 rosin-rammer index, above 3.5-4.5% 44 ${\mu}{\textrm}{m}$ residue, 4000$\pm$100 $\textrm{cm}^2$/g blaine. Such cements are, therefore, supurior to super low heat cement and slag-blended cement in comparing the physical properties of strength, slump, slump-flow, adiabetic temperature, etc.

  • PDF

니켈기 초내열합금 IN738LC의 고온 저주기피로 거동 (Low-Cycle Fatigue in Ni-Base Superalloy IN738LC at Elevated Temperature)

  • 황권태;김재훈;유근봉;이한상;유영수
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1403-1409
    • /
    • 2010
  • 니켈기 초내열합금은 고온 강도를 지속적으로 증가시키며 현재 비행기 엔진, 선박 엔진 및 발전용 가스터빈 고온 부품 등을 만드는 가장 중요한 소재로 오래전부터 사용되어져 왔다. 이러한 부품의 수명을 연장하기 위해서는 사용 환경과 유사한 조건에서의 피로수명 예측이 매우 중요하다. 따라서 본 연구에서는 가스터빈 블레이드 소재인 니켈기 초내열합금 IN738LC에 대하여 실제운전환경과 유사한 조건을 설정하여 다양한 변형률 범위와 온도에서 시험을 수행하였다. 저주기 피로수명을 예측하기 위하여 변형률 에너지 밀도와 파단 사이클과의 관계를 사용하였다. 수명의 예측은 시험결과를 토대로 변형률 에너지법과 Coffin-Manson법에 의하여 예측을 하였다.

저에너지주택의 지열히트펌프시스템 냉·난방 성능분석 (Heating and Cooling Performance Analysis of Ground Source Heat Pump System in Low Energy House)

  • 백남춘;김성범;신우철
    • 설비공학논문집
    • /
    • 제28권10호
    • /
    • pp.387-393
    • /
    • 2016
  • A ground source heat pump system maintains a constant efficiency due to its stable heat source and radiant heat temperature which provide a more effective thermal performance than that of the air source heat pump system. As an eco-friendly renewable energy source, it can reduce electric power and carbon dioxide. In this study, we analyzed one year of data from a web based remote monitoring system to estimate the thermal performance of GSHP with the capacity of 3RT, which is installed in a low energy house located in Daejeon, Korea. This GSHP system is a hybrid system connected to a solar hot water system. Cold and hot water stored in a buffer tank is supplied to six ceiling cassette type fan coil units and a floor panel heating system installed in each room. The results are as follows. First, the GSHP system was operated for ten minutes intermittently in summer in order to decrease the heat load caused by super-insulation. Second, the energy consumption in winter where the system was operated throughout the entire day was 7.5 times higher than that in summer. Moreover, the annual COP of the heating and cooling system was 4.1 in summer and 4.2 in winter, showing little difference. Third, the outlet temperature of the ground heat exchanger in winter decreased from $13^{\circ}C$ in November to $9^{\circ}C$ in February, while that in summer increased from $14^{\circ}C$ to $17^{\circ}C$ showing that the temperature change in winter is greater than that in summer.

Optimum Design of Vaporizer Fin with Liquefied Natural Gas by Numerical Analysis

  • Jeong Hyo-Min;Chung Han-Shik;Lee Sang-Chul;Kong Tae-Woo;Yi Chung-Seub
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.545-553
    • /
    • 2006
  • Generally, the temperature drop under $0^{\circ}C$ on vaporizer surface creates frozen dews. This problem seems to increase as the time progress and humidity rises. In addition, the frozen dews create frost deposition. Consequently, heat transfer on vaporizer decreases because frost deposition causes adiabatic condition. Therefore, it is very important to solve this problem. This paper aims to study of the optimum design of used vaporizer at local LNG station. In this paper, experimental results were compared with numerical results. Geometries of numerical and experimental vaporizers were identical. Studied parameters of vaporizer are angle between two fins $(\Phi)$ and fin thickness $(TH_F)$. Numerical analysis results were presented through the correlations between the ice layer thickness $(TH_{ICE})$ on the vaporizer surface to the temperature distribution of inside vaporizer $(T_{IN})$, fin thickness $(TH_F)$, and angle between two fins $(\Phi)$. Numerical result shows good agreement with experimental outcome. Finally, the correlations for optimum design of vaporizer are proposed on this paper.