• Title/Summary/Keyword: Super frame

Search Result 115, Processing Time 0.025 seconds

Structural System Selection and Highlights of Changsha IFC T1 Tower

  • Jianlong, Zhou;Daoyuan, Lu;Liang, Huang;Jun, Ji;Jun, Zhu;Jingyu, Wang
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.99-106
    • /
    • 2014
  • This paper presents the determination of the structural system of the Changsha IFC T1 tower with 452 m in architectural height and 440.45 m in structural height. Sensitivity analyses are carried out by varying the location of belt trusses and outriggers. The enhancement of seismic capacity of the outer frame by reasonably adjusting the column size is confirmed based on parametric studies. The results from construction simulation including the non-load effect of structures demonstrate that the deformation of vertical members has little effect on the load-bearing capacity of belt trusses and outriggers. The elastoplastic time-history analysis shows that the overall structure under rare earthquake load remains in an elastic state. The influence of the frame shear ratio and frame overturning moment ratio on the proposed model and equivalent mega column model is investigated. It is found that the frame overturning moment ratio is more applicable for judging the resistance of the outer frame against lateral loads. Comparison is made on the variation of these two effects between a classical frame-core tube-outrigger structure and a structure with diagonal braces between super columns under rare earthquakes. The results indicate that plasticity development of the top core cube of the braced structure may be significantly improved.

Seismic design and elastic-plastic analysis of the hengda group super high-rise office buildings

  • Zhang, Xiaomeng;Ren, Qingying;Liu, Wenting;Yang, Songlin;Zhou, Yilun
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.175-188
    • /
    • 2020
  • The Hengda Group super high-rise building in Jinan City uses the frame-core tube structural system. With a height of 238.3 m, it is above the B-level height limit of 150 m for buildings within 7-magnitude seismic fortification zones. Therefore, it is necessary to apply performance-based seismic design to this super high-rise building. In this study, response spectrum analysis and comparative analysis of the structure are conducted using two software applications. Moreover, elastic time-history analysis, seismic analysis under an intermediate earthquake, and elastic-plastic time-history analysis under rare earthquakes are performed. Based on the analysis results, corresponding strengthening measures are implemented at weaker structural locations, such as corners, wall ends connected to framed girders, and coupling beams connected to framed girders. The failure mode and failure zone of major stress components of the structure under rare earthquakes are analysed. The conclusions to this research demonstrate that weaker locations and important parts of the structure satisfy the requirements for elastic-plastic deformation in the event of rare earthquakes.

Bio-MAC: Optimal MAC Protocol for Various Bio-signal Transmission in the WBSN Environment (Bio-MAC: WBSN환경에서 다양한 생체신호 전송을 위한 최적화된 MAC Protocol)

  • Jang, Bong-Mun;Ro, Young-Sin;Yoo, Sun-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.423-425
    • /
    • 2007
  • In this paper, Medium Access Control(MAC) protocol designed for Wireless Body area Sensor Network(Bio-MAC) is proposed, Because in WBSN, the number of node is limited and each node has different characteristics. Also, reliability in transmitting vital data sensed at each node and periodic transmission should be considered so that general MAC protocol cannot satisfy such requirements of biomedical sensors in WBSN. Bio-MAC aims at optimal MAC protocol in WBSN. For this, Bio-MAC used Pattern -SuperFrame, which modified IEE E 802.15.4-based SuperFrame structurely. Bio-MAC based on TDMA uses Medium Access-priority and Pattern eXchange -Beacon method for dynamic slot allocation by considering critical sensing data or power consumption level of sensor no de etc. Also, because of the least delay time. Bio-MAC is suitable in the periodic transmission of vital signal data. The simulation results demonstrate that a efficient performance in WBSN can be achieved through the proposed Bio-MAC.

  • PDF

Analysis Performance of Super Window through Simulation and Verification Experiment (시뮬레이션과 실증실험을 통한 슈퍼윈도우의 성능분석)

  • Peak, Sang-Hun;Lee, Jin-Sung;Cho, Soo;Jang, Cheol-Yong;Sung, Uk-Joo;Suh, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1069-1074
    • /
    • 2006
  • Heat loss by window in building occupies about 1/4 of energy amount used building. Therefore, high thermal insulation of windows system can speak as very important part in save energy of building. in this research, After select most suitable frame design and Glazing system for high thermal insulation of windows, execute simulation of mixing frame and Glazing System. Also, manufacture windows with the result and execute verification experiment, with verified simulation, this research evaluated thermal insulation performance of window by Glazing System's change.

  • PDF

Study on Structural Efficiency of Super-Tall Buildings

  • Jianlong, Zhou;Lianjin, Bao;Peng, Qian
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.185-190
    • /
    • 2014
  • Based on a 405m high super-tall building, the influence of outriggers, different shapes and layouts of structural plane and elevation on structural efficiency under lateral forces is studied in this paper. A calculation formula concerning the structural efficiency is given. The study shows that structural efficiency can be improved by triangulating the plane shape, using mega columns, the peripherization of the plane layout, tapering the elevation shape and setting bracing structure in the elevation. The arrangement of outriggers between the core tube and flange frame can reduce the shear lag effect in order to improve structural efficiency. The essence of improving structural efficiency of super-tall buildings is to maximize the plane bending stiffness and to make its deformation approach to plane section assumption.

Optimal Arrangement of Resilient Mount installed on Frame Support Structure at Shipboard Equipment under Shock Load (충격하중하의 탑재장비 프레임 지지구조의 탄성마운트 배치 최적화에 관한 연구)

  • Ji, Yong Jin;Kwak, Jeong Seok;Lee, Hyun Yup;Kim, Sung Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.298-304
    • /
    • 2015
  • Shipboard equipment in naval ships should be designed to be safe under the shock load. Very high stress due to the shock load can be effectively reduced by the resilient mounts considering the mount capacity and dynamic characteristics. An optimum arrangement of resilient mount installed to absorb the shock energy is addressed to assess the safety of ship structure and shipboard equipment subjected to the shock load. Structural responses are analyzed for both frame structure supporting the shipboard equipment subject to the shock load with and without the resilient mounts. The shock absorbability of the resilient mount is evaluated by the results of structural response analysis; meanwhile, several types of shock analyses considering the arrangement of resilient mounts are carried out and the shock responses are compared to verify the effect of the arrangement. Thereafter, optimum arrangements are obtained by means of Genetic algorithm (GA) considering the different capacities of resilient mount. Stress, deformation and dynamic feature at the frame structure supporting the shipboard equipment under the shock load are also discussed in order to meet the capacity of resilient mount.

A Study on the Productivity Analysis of Finishing Works on Super High-rise Mixed_use Building (초고층 주상복합 건축물 마감공사의 공종별 생산성 비교에 관한 연구)

  • Hong, Bo-Bae;Kim, Yong-Man;Kim, Ju-Hyung;Kim, Jae-Jun
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.165-170
    • /
    • 2010
  • Super high-rise mixed use buildings require a longer period for construction. Especially finishing work takes up about 40% of the whole construction period. Thus, finishing work is becoming an important factor in determining the construction period along with earth work and frame work. As the expected returns added by the reduction of the period and cost in constructing super high-rise mixed use buildings are huge, the expectations are now increasing for the possible gains. In this respect, as the period of finishing work is easier to be shortened than that of frame work, the efforts to acquire the technical knowledge to reduce the finishing work period are now being required. Accordingly, in this study, we aimed at suggesting the basic data for designing an economic plan for finishing-work procedure by analyzing the productivity of each work type of finishing work procedure on the basis of the execution and results of a construction method as a time-flexible finishing work plan. For this, we categorized the work types of finishing work procedure into each work unit and provided a work-system for each of them. Also, with case studies, we calculated the detailed amounts of the work-loads, required materials, productivity, and productivity index of the main work types of finishing work procedure and each of their separate work units as well as analyzed the relationship between the value results to suggest a better way to improve its productivity.

Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study

  • Lu, Yi;Zhang, Luo;He, Zheng;Feng, Fan;Pan, Feng
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.405-421
    • /
    • 2021
  • To gain insight into the wind-induced safety concerns associated with attached tower cranes during the construction of super-tall buildings, a 606 m level frame-core tube super-tall building is selected to investigate the wind-induced vibration response and fragility of an outer-attached tower crane at all stages of construction. The wind velocity time history samples are artificially generated and used to perform dynamic response analyses of the crane to observe the effects of wind velocity and wind direction under its working and non-working resting state. The adverse effects of the relative displacement response at different connection supports are also identified. The wind-resistant fragility curves of the crane are obtained by introducing the concept of incremental dynamic analysis. The results from the investigation indicate that a large relative displacement between the supports can substantially amplify the response of the crane at high levels. Such an effect becomes more serious when the lifting arm is perpendicular to the plane of the connection supports. The flexibility of super-tall buildings should be considered in the design of outer-attached tower cranes, especially for anchorage systems. Fragility analysis can be used to specify the maximum appropriate height of the tower crane for each performance level.

A beam switching time plan synchronization method based on frame detection time for beam-hopping satellite transmission systems (빔-호핑 위성 전송 시스템을 위한 프레임 검출 시간 기반의 빔 스위칭 타임 플랜 동기 기법)

  • Oh, Jonggyu;Oh, Deokgil
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.264-266
    • /
    • 2018
  • 본 논문에서는 빔-호핑 위성 전송 시스템을 운용하기 위해 필수적으로 이루어져야 하는 빔 스위칭 타임 플랜 (Beam Switching Time Plan, BSTP) 동기 기법을 제안한다. 제안하는 기법은 게이트웨이의 변조 모듈에서 SF (super-frame) 신호를 전송한 후, 레퍼런스 수신 모듈에서 신호 전송 후 프레임 검출이 일어나기까지 걸리는 시간과 유효한 신호 검출 후 프레임 검출이 일어나기까지 걸리는 시간을 이용하여 BSTP 동기를 이룬다.

  • PDF

The Rational Optimization and Evolution of the Structural Diagonal Aesthetic in Super-Tall Towers

  • Besjak, Charles;Biswas, Preetam;Fast, Tobias
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.305-318
    • /
    • 2016
  • In the design of super-tall towers, engineers often find the conventional frame systems used in countless buildings in the past decades incapable of providing the required form, performance and constructability demanded by super-tall heights. The strength of the diagrid as a structural system in high-rise towers is the total flexibility it affords the designer as an adaptable, efficient and buildable scheme. Using fundamental engineering principles combined with modern computational tools, designers can take minimum load path forms to create rationalized diagrid geometries to create optimized, highly efficient towers. The use of diagrid frames at SOM has evolved as a structural typology beginning with the large braced frames on the John Hancock Center and continued in modern applications proving to be a powerful system in meeting the demands of supertall buildings.