• Title/Summary/Keyword: Super Cooling

Search Result 92, Processing Time 0.022 seconds

Spring Back in Amorphous Sheet Forming at High Temperature (아몰퍼스 고온 판재성형시 스프링백)

  • Lee Y-S
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.751-755
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die comer radius, friction, blank holder force, clearance and initial funning temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling, and two modes of spring back are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

A "Fabric-First" Approach to Sustainable Tall Building Design

  • Oldfield, Philip
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.177-185
    • /
    • 2017
  • This research suggests the most effective way for improving energy efficiency in tall buildings is a "fabric-first" approach. This involves optimizing the performance of the building form and envelope as a first priority, with additional technologies a secondary consideration. The paper explores a specific fabric-first energy standard known as "Passivhaus". Buildings that meet this standard typically use 75% less heating and cooling. The results show tall buildings have an intrinsic advantage in achieving Passivhaus performance, as compared to low-rise buildings, due to their compact form, minimizing heat loss. This means high-rises can meet Passivhaus energy standards with double-glazing and moderate levels of insulation, as compared to other typologies where triple-glazing and super-insulation are commonplace. However, the author also suggests that designers need to develop strategies to minimize overheating in Passivhaus high-rises, and reduce the quantity of glazing typical in high-rise residential buildings, to improve their energy efficiency.

Soft-magnetic Characteristics of Co-based Amorphous Powder Produced by Spinning Water Atomization Process (SWAP)

  • Otsuka, I.;Wada, K.;Watanabe, A.;Kadomura, T.;Yagi, M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.784-785
    • /
    • 2006
  • Co-based amorphous powder was produced by a new atomization process "Spinning Water Atomization Process (SWAP)", having rapid super-cooling rate. The composition of the alloys was ($(Co_{0.95}Fe_{0.05})_{1-x}Cr_x$)$_{75}Si_{15}B_{10}$ (x=0, 0.025, 0.05, 0.075). The powders became the amorphous state even if particle size was up to about $500{\mu}m$. The coercive force of powders was about 0.35 - 0.7 Oe. Furthermore, Co-based amorphous powder cores with glass binders were made by cold-pressing and sintering methods. The initial permeability of the core in the frequency range up to 100 kHz was about 110, and the core loss at 100 kHz for Bm = 0.1 T was $350kW/m^3$.

  • PDF

Influence of Control Pressure and Concentration of Water Solution at Continuous Ice Making in a Tube (제어압력 및 수용액의 농도가 관내 연속제빙에 미치는 영향)

  • ;;Hideo Inaba;Akihiko Horibe;Naoto haruki;Hidetoshi Miura
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1236-1244
    • /
    • 2001
  • In the present study, the possibility of continuous slurry ice making using flowing water solution in a cooled tube has been investigated. The experiments were carried out at various concentration and velocity of water solution, temperature of cooled tube wall, and control pressure in a tube. As a result, four types of operating conditions, that is super-cooling, continuous ice making, intermittent ice making and ice blockage, were classified. And it was found that the critical condition for the continuous ice making was acquired as a function of these experimental parameters.

  • PDF

Study on the Flat Zone Expansion and Temperature Deviation Reduction of Low Temperature Furnace for Semiconductor Process (반도체용 저온 열처리로의 Flat Zone 확장 및 온도편차 감소에 관한 연구)

  • Joo, Kang Wo;Shim, Seung Sool;Jang, Hyeok;Lee, You Young;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.83-90
    • /
    • 2014
  • This paper is about the yield rate of lower temperature furnace for wafer heat-treatment. The flat-zone that the temperature in furnace has uniform distribution specific area is the significant variable to the yield rate. In this study, we researched about the ways how to widen the flat zone in the furnace using CFD. As a result, we confirmed that the characteristic of the flat-zone was changed when SCU(Super Cooling Unit) was used. We considered temperature control with above.

A Study on the Thermal Crack Control of the In-Ground LNG Storage Tank as Super Massive Structures (지하식 LNG 저장탱크 구조물의 온도균열 제어에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.773-780
    • /
    • 2011
  • In this study, thermal stress analysis are carried out considering material properties, curing condition, ambient temperature, and casting date of the mass concrete placed in bottom slab and side wall of the in-ground type LNG tank as a super massive structure. Also, based on the numerical results, cracking possibility is predicted and counter measures to prevent the cracking are proposed. For the tasks, two optimum mix proportions were selected. From the results of the thermal stress analysis, the through crack index of 1.2 was satisfied for separately caste concrete lots except for the bottom slab caste in 2 separate sequences. For the double caste bottom slab, it is necessary introduce counter measures such as pre-cooling prior to the site construction. Also, another crack preventive measure is to lower the initial casting temperature by $25^{\circ}C$ or less to satisfy 1.2 through crack index criterion. In the $1^{st}$ and $2^{nd}$ caste bottom slab, the surface crack index was over 1.2. Therefore, the surface cracks can be controlled by implementing the curing conditions proposed in this study. Since the side wall's surface crack index was over 1.0, it is safe to assume that the counter preventive measures can control width and number of cracks.

Heat Treatment Effect on Pitting Corrosion of Super Duplex Stainless Steel UNS S32750 FCA Welds (슈퍼 듀플렉스 스테인리스강 UNS S32750의 FCA 용접 후 열처리가 공식에 미치는 영향)

  • Jang, Bok-Su;Moon, In-June;Kim, Se-Cheol;Koh, Jin-Hyun
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.20-25
    • /
    • 2013
  • This study was carried out to investigate the influence of a sigma phase precipitation on the pitting corrosion resistance and microstructural change of super duplex stainless steels(UNS S32750). The welds made by FCAW (Flux Cored Arc Welding) were heat treated ($930^{\circ}C$, $1080^{\circ}C$, $1230^{\circ}C$) and quenched. Based on the microstructural examination, it was found that the ${\sigma}$ phase was formed in base metals and welds heat treated at $930^{\circ}C$ while there were little ${\sigma}$phases formed in base metals and weld metal experienced the relatively fast cooling from $1080^{\circ}C$ and $1230^{\circ}C$. On the other hand, the most weight loss due to pitting corrosion occurred in base and weld metals heat treated at $930^{\circ}C$. It was confirmed that the pitting corrosion occurred in the phase boundaries of ferrite/sigma and austenite/sigma. The pitting corrosion resistance decreased owing to an increase in Cr, Mo depleted areas adjacent to the intermetallic phases such as ${\sigma}$phases. The hardness was greatly increased due to the precipitation ${\sigma}$phases.

The fabrication of bulk magnet stacked with HTS tapes for the magnetic levitation

  • Park, Insung;Kim, Gwantae;Kim, Kyeongdeok;Sim, Kideok;Ha, Hongsoo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.47-51
    • /
    • 2022
  • With the innovative development of bio, pharmaceutical, and semiconductor technologies, it is essential to demand a next-generation transfer system that minimizes dust and vibrations generated during the manufacturing process. In order to develop dust-free and non-contact transfer systems, the high temperature superconductor (HTS) bulks have been applied as a magnet for levitation. However, sintered HTS bulk magnets are limited in their applications due to their relatively low critical current density (Jc) of several kA/cm2 and low mechanical properties as a ceramic material. In addition, during cooling to cryogenic temperatures repeatedly, cracks and damage may occur by thermal shock. On the other hand, the bulk magnets made by stacked HTS tapes have various advantages, such as relatively high mechanical properties by alternate stacking of the metal and ceramic layer, high magnetic levitation performance by using coated conductors with high Jc of several MA/cm2, consistent superconducting properties, miniaturization, light-weight, etc. In this study, we tried to fabricate HTS tapes stacked bulk magnets with 60 mm × 60 mm area and various numbers of HTS tape stacked layers for magnetic levitation. In order to examine the levitation forces of bulk magnets stacked with HTS tapes from 1 to 16 layers, specialized force measurement apparatus was made and adapted to measure the levitation force. By increasing the number of HTS tapes stacked layers, the levitation force of bulk magnet become larger. 16 HTS tapes stacked bulk magnets show promising levitation force of about 23.5 N, 6.538 kPa at 10 mm of levitated distance from NdFeB permanent magnet.

Heating and Cooling Performance Analysis of Ground Source Heat Pump System in Low Energy House (저에너지주택의 지열히트펌프시스템 냉·난방 성능분석)

  • Baek, Namchoon;Kim, Sungbum;Shin, Ucheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.387-393
    • /
    • 2016
  • A ground source heat pump system maintains a constant efficiency due to its stable heat source and radiant heat temperature which provide a more effective thermal performance than that of the air source heat pump system. As an eco-friendly renewable energy source, it can reduce electric power and carbon dioxide. In this study, we analyzed one year of data from a web based remote monitoring system to estimate the thermal performance of GSHP with the capacity of 3RT, which is installed in a low energy house located in Daejeon, Korea. This GSHP system is a hybrid system connected to a solar hot water system. Cold and hot water stored in a buffer tank is supplied to six ceiling cassette type fan coil units and a floor panel heating system installed in each room. The results are as follows. First, the GSHP system was operated for ten minutes intermittently in summer in order to decrease the heat load caused by super-insulation. Second, the energy consumption in winter where the system was operated throughout the entire day was 7.5 times higher than that in summer. Moreover, the annual COP of the heating and cooling system was 4.1 in summer and 4.2 in winter, showing little difference. Third, the outlet temperature of the ground heat exchanger in winter decreased from $13^{\circ}C$ in November to $9^{\circ}C$ in February, while that in summer increased from $14^{\circ}C$ to $17^{\circ}C$ showing that the temperature change in winter is greater than that in summer.

Effects of C on the Strength and Toughness of FCAW Weld Metal of YS 460 MPa Steels for Ship and Offshore Structures (선박·해양 구조물용 YS 460MPa 강재 FCAW 용접금속의 강도와 인성에 미치는 C의 영향)

  • Jeong, Sang-Hoon;Eom, Jeong-Ho;Choi, Han-Geul;Jeong, Byung-Ho;Hur, Sung-Hwa;Kang, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.29-34
    • /
    • 2014
  • This paper has an purpose to study the effect of C on the toughness of YS 460 MPa FCAW weld metal. These effects were evaluated by charpy impact and CTOD test about 4 FCAW weld metal containing various C and Si content in relation to microstructure. Increase of C content was helpful to increase AF volume fraction and reduce PF(G) and FS volume fraction by increasing super cooling rate for ferrite transformation. Also, Increase of C content up to 0.045wt% made the strength and impact toughness higher by increasing AF volume fraction. The weld metal containing higher C content indicated higher CTOD value. It is because the volume fraction of PF(G) and FS, can play a role as crack initiation site, was reduced. Effect of C on the strength and elongation of weld metal was higher with an increase of Si contents.