• 제목/요약/키워드: Sunshine

검색결과 562건 처리시간 0.028초

Effect of the Climatic Condition on the Growth Characteristic of Domestic Corn Hybrids in Alpine Region (고랭지에서 기후조건이 국내육성 옥수수 품종의 생육특성에 미치는 영향)

  • Kim, Meing-Jooung;Lee, Seung-Ho;Chang, Sun-Sik;Kim, Tae-Il;Choi, Sun-Ho;Cho, Won-Mo;Hong, Seong-Gu;Lee, Sang-Rak;Kim, Myeong-Hwa
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제31권4호
    • /
    • pp.371-382
    • /
    • 2011
  • The aim of the present study was to investigate the relationship between climates, growth characteristic and yield of silage corn at Hanwoo Experiment Station, National Institute of Animal Science, Daegwallyeong in Gangwon Province located at altitude of 760 m, from 2009 to 2010. The mean minimum temperature was $12.29^{\circ}C$ from seeding to harvest in 2009, $14.30^{\circ}C$ in 2010, the mean maximum temperature was $21.66^{\circ}C$, $23.48^{\circ}C$, respectively. The mean temperature was $16.85^{\circ}C$ in 2009 and $18.55^{\circ}C$ in 2010, respectively. Duration of sunshine was 711.3 hours in 2009 and 663.8 hours in 2010, and precipitation was 893.8 mm in 2009 and 752.1 mm in 2010, respectively. In 2009, for all Kwangpyeongok, Gangdaok, Cheonganok, Cheongsaok, Pyeonganok, the early growth was good with 1.2, while in 2010 the growth for Pyeonganok was good with 1.3 comparing to others, which showed worse growth than in the previous year with 2.4~3.0. There was significant difference in the ear height between 2009 and 2010, showing mean value of 85.8 cm and 105 cm for all the species in 2009 and in 2010, respectively (p<0.001). In 2010, stem diameter for all the species were larger, and there was significant difference in mean value of the diameter between 2009 and 2010 (p<0.001). There was significant difference in the plant height and ear height between 2009 and 2010, showing 200 cm and 258 cm in 2009 and 2010, respectively (p<0.001). There was significant difference in the average days to silk, showing 103.8 days in 2009, 90 days in 2010, respectively (p<0.001). There was no lodging or disease-insect damage in all hybrid silage corn in both 2009 and 2010. The mean ear rates were 23.4% in 2009, but almost doubled, 52.1%, in 2010. There was significant difference in fresh yield between the two years, showing 54,611 kg/ha in 2009 and 78,733 kg/ha in 2010, respectively (p<0.001). Dry matter yields were higher in 2010 than in 2009. TDN yields of Gangdaok and Cheonganok were higher in 2009, whereas that of Cheongsaok and Pyeonganok were higher in 2010. Crude protein contents were higher in 2010 than in 2009 for all the species.

Assessment of the Angstrom-Prescott Coefficients for Estimation of Solar Radiation in Korea (국내 일사량 추정을 위한 Angstrom-Prescott계수의 평가)

  • Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제18권4호
    • /
    • pp.221-232
    • /
    • 2016
  • Models to estimate solar radiation have been used because solar radiation is measured at a smaller number of weather stations than other variables including temperature and rainfall. For example, solar radiation has been estimated using the Angstrom-Prescott (AP) model that depends on two coefficients obtained empirically at a specific site ($AP_{Choi}$) or for a climate zone ($AP_{Frere}$). The objective of this study was to identify the coefficients of the AP model for reliable estimation of solar radiation under a wide range of spatial and temporal conditions. A global optimization was performed for a range of AP coefficients to identify the values of $AP_{max}$ that resulted in the greatest degree of agreement at each of 20 sites for a given month during 30 years. The degree of agreement was assessed using the value of Concordance Correlation Coefficient (CCC). When $AP_{Frere}$ was used to estimate solar radiation, the values of CCC were relatively high for conditions under which crop growth simulation would be performed, e.g., at rural sites during summer. The statistics for $AP_{Frere}$ were greater than those for $AP_{Choi}$ although $AP_{Frere}$ had the smaller statistics than $AP_{max}$ did. The variation of CCC values was small over a wide range of AP coefficients when those statistics were summarized by site. $AP_{Frere}$ was included in each range of AP coefficients that resulted in reasonable accuracy of solar radiation estimates by site, year, and month. These results suggested that $AP_{Frere}$ would be useful to provide estimates of solar radiation as an input to crop models in Korea. Further studies would be merited to examine feasibility of using $AP_{Frere}$ to obtain gridded estimates of solar radiation at a high spatial resolution under a complex terrain in Korea.

Genotype $\times$ Environment Interaction of Rice Yield in Multi-location Trials (벼 재배 품종과 환경의 상호작용)

  • 양창인;양세준;정영평;최해춘;신영범
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제46권6호
    • /
    • pp.453-458
    • /
    • 2001
  • The Rural Development Administration (RDA) of Korea now operates a system called Rice Variety Selection Tests (RVST), which are now being implemented in eight Agricultural Research and Extension Services located in eight province RVST's objective is to provide accurate yield estimates and to select well-adapted varieties to each province. Systematic evaluation of entries included in RVST is a highly important task to select the best-adapted varieties to specific location and to observe the performance of entries across a wide range of test sites within a region. The rice yield data in RVST for ordinary transplanting in Kangwon province during 1997-2000 were analyzed. The experiments were carried out in three replications of a random complete block design with eleven entries across five locations. Additive Main effects and Multiplicative Interaction (AMMI) model was employed to examine the interaction between genotype and environment (G$\times$E) in the biplot form. It was found that genotype variability was as high as 66%, followed by G$\times$E interaction variability, 21%, and variability by environment, 13%. G$\times$E interaction was partitioned into two significant (P<0.05) principal components. Pattern analysis was used for interpretation on G$\times$E interaction and adaptibility. Major determinants among the meteorological factors on G$\times$E matrix were canopy minimum temperature, minimum relative humidity, sunshine hours, precipitation and mean cloud amount. Odaebyeo, Obongbyeo and Jinbubyeo were relatively stable varieties in all the regions. Furthermore, the most adapted varieties in each region, in terms of productivity, were evaluated.

  • PDF

The Effects of Major Climatic Factors on Barely Response to NPK Fertilizers (대맥(大麥)의 NPK 비료응수(應酬)에 미치는 주요기상인자(主要氣象因子)들의 영향(影響)에 관(關)하여)

  • Park, Nae Jung;Lee, Choon Soo;Ryu, In Soo;Park, Chon Suh;Kim, Yung Sup
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제6권2호
    • /
    • pp.129-136
    • /
    • 1973
  • In order to study the effects of climatic factors on barley responses to NPK fertilizers, the responses under the conditions of cold, moisture and drought damages and in different temperature regions, Nothern, Central, and Southern, which were devided according to average temperature for growing season of barley (from Nov. to May) were investigated from the results of NPK experiments which were carried out from Nov., 1965 to May 1969. The relationships between occurrence rate of cold, moisture, and drought damages and average or average lowest temperature in winter (Dec., Jan., and Feb), and the amount of precipitation in spring (Mar., Apr,. and May) were also investigated. 1. The lower the average lowest temperature, the higher the occurrence rate of cold damage of barley. When affected by cold damage, barley responded more significantly to P and K fertilizers. 2. The more the amount of precipitation in spring, the more the moisture damage and the less the drought damage. Damage from both moisture and drought were the lowest at 280mm. Since the average precipitation in spring in Korea is 230mm, drought damage is always more problem in terms of occurrence of damage, but total yield reduction is greater by moisture damage. 3. When affected by moisture damage, barley responded more to P and K fertilizers. In case of drought damage, only response to K was recognizable. 4. The reductions of barley yield due to cold, moisture, and drought damages were in average 31 (29-33), 42, and 19(12-25)%, respectively. 5. Average barley responses to NPK fertilizers were 44(34-58), 19(5-38), and 9(1-34)%, respectively by percent responses with regard to maximum possible yields. 6. Responses to nitrogen increased as the sunshine hours increased. Under dry condition, the response increased as the precipitation increased. However if the amount of precipitation was excessive or too little, the response was dropped markedly. 7. The responses to P and K were higher in North than South to the same degree. As the average temperature for growing season of barley (from Nov. to May) increased by $1^{\circ}C$, the percent responses to both P and K increased by 4.3%.

  • PDF

A Study on the Determinants of Land Price in a New Town (신도시 택지개발사업지역에서 토지가격 결정요인에 관한 연구)

  • Jeong, Tae Yun
    • Korea Real Estate Review
    • /
    • 제28권1호
    • /
    • pp.79-90
    • /
    • 2018
  • The purpose of this study was to estimate the pricing factors of residential lands in new cities by estimating the pricing model of residential lands. For this purpose, hedonic equations for each quantile of the conditional distribution of land prices were estimated using quantile regression methods and the sale price date of Jangyu New Town in Gimhae. In this study, a quantile regression method that models the relation between a set of explanatory variables and each quantile of land price was adopted. As a result, the differences in the effects of the characteristics by price quantile were confirmed. The number of years that elapsed after the completion of land construction is the quadratic effect in the model because its impact may give rise to a non-linear price pattern. Age appears to decrease the price until certain years after the construction, and increases the price afterward. In the estimation of the quantile regression, land age appears to have a statistically significant impact on land price at the traditional level, and the turning point appears to be shorter for the low quantiles than for the higher quantiles. The positive effects of the use of land for commercial and residential purposes were found to be the biggest. Land demand is preferred if there are more than two roads on the ground. In this case, the amount of sunshine will improve. It appears that the shape of a square wave is preferred to a free-looking land. This is because the square land is favorable for development. The variables of the land used for commercial and residential purposes have a greater impact on low-priced residential lands. This is because such lands tend to be mostly used for rental housing and have different characteristics from residential houses. Residential land prices have different characteristics depending on the price level, and it is necessary to consider this in the evaluation of the collateral value and the drafting of real estate policy.

Assessment of Productivity and Vulnerability of Climate Impacts of Forage Corn (Kwangpyeongok) Due to Climate Change in Central Korea (국내 중부지역에 있어서 기후변화에 따른 사료용 옥수수의 생산성 및 기후영향취약성 평가)

  • Chung, Sang Uk;Sung, Si Heung;Zhang, Qi-Man;Jung, Jeong Sung;Oh, Mirae;Yun, Yeong Sik;Seong, Hye Jin;Moon, Sang Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제39권2호
    • /
    • pp.105-113
    • /
    • 2019
  • A two-year study was conducted from 2017 to 2018 by the establishment of a test field at Chungju-si and Cheongyang-gun. Plant height, number of leaves, insects and diseases, and fresh and dry matter yields for corn hybrid('Kwangpyeongok') were investigated. Daily average, maximum, and minimum temperature, monthly average temperature, daily precipitation, and sunshine duration during the growing season were investigated. We selected climate-critical factors to corn productivity and conducted an evaluation of vulnerability to climate change from 1999 to 2018 for both regions. In 2018, the dry matter yield of forage corn was 6,475 and 7,511 kg/ha in Chungju and Cheongyang, respectively, which was half of that in 2017. The high temperature and drought phenomenon in the 2018 summer caused the corn yield to be low. As well as temperature, precipitation is an important climatic factor in corn production. As a result of climate impact vulnerability assessment, the vulnerability has increased recently compared to the past. It is anticipated that if the high temperature phenomenon and drought caused by climate change continues, a damage in corn production will occur.

Predicting Crime Risky Area Using Machine Learning (머신러닝기반 범죄발생 위험지역 예측)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제21권4호
    • /
    • pp.64-80
    • /
    • 2018
  • In Korea, citizens can only know general information about crime. Thus it is difficult to know how much they are exposed to crime. If the police can predict the crime risky area, it will be possible to cope with the crime efficiently even though insufficient police and enforcement resources. However, there is no prediction system in Korea and the related researches are very much poor. From these backgrounds, the final goal of this study is to develop an automated crime prediction system. However, for the first step, we build a big data set which consists of local real crime information and urban physical or non-physical data. Then, we developed a crime prediction model through machine learning method. Finally, we assumed several possible scenarios and calculated the probability of crime and visualized the results in a map so as to increase the people's understanding. Among the factors affecting the crime occurrence revealed in previous and case studies, data was processed in the form of a big data for machine learning: real crime information, weather information (temperature, rainfall, wind speed, humidity, sunshine, insolation, snowfall, cloud cover) and local information (average building coverage, average floor area ratio, average building height, number of buildings, average appraised land value, average area of residential building, average number of ground floor). Among the supervised machine learning algorithms, the decision tree model, the random forest model, and the SVM model, which are known to be powerful and accurate in various fields were utilized to construct crime prevention model. As a result, decision tree model with the lowest RMSE was selected as an optimal prediction model. Based on this model, several scenarios were set for theft and violence cases which are the most frequent in the case city J, and the probability of crime was estimated by $250{\times}250m$ grid. As a result, we could find that the high crime risky area is occurring in three patterns in case city J. The probability of crime was divided into three classes and visualized in map by $250{\times}250m$ grid. Finally, we could develop a crime prediction model using machine learning algorithm and visualized the crime risky areas in a map which can recalculate the model and visualize the result simultaneously as time and urban conditions change.

Influence of El Niño on the Production of Spring Kimchi Cabbage in South Korea (국내 노지 봄배추 생산량에 대한 엘니뇨 영향)

  • Shim, Kyo-Moon;Kim, Yongseok;Jung, Myung-Pyo;Kim, Ji-Won;Kang, Kee-Kyung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제20권4호
    • /
    • pp.330-336
    • /
    • 2018
  • El $Ni{\tilde{n}}o$ would cause extreme weather conditions, which would result in a negative impact on crop production. The objective of this study was to assess the impact of El $Ni{\tilde{n}}o$ on spring kimchi cabbabe production for the period from 1981- 2016 in South Korea. In this study, years with less than 1.0 Oceanic $Ni{\tilde{n}}o$ index were classified into non El $Ni{\tilde{n}}o$ years. The other years were classified as El $Ni{\tilde{n}}o$ years. The national average production of spring kimchi cabbage in El $Ni{\tilde{n}}o$ years ($3,800kg\;10a^{-1}$) tended to be less than that in non El $Ni{\tilde{n}}o$ years ($4,016kg\;10a^{-1}$). However, there was no significant differences (p = 0.078) in the production between these groups of years. The averaged production of spring kimchi cabbage of El $Ni{\tilde{n}}o$ end years ($3,707{\pm}331kg\;10a^{-1}$) was less than those of El $Ni{\tilde{n}}o$ start years and non El $Ni{\tilde{n}}o$ years by 186 and $309kg\;10a^{-1}$, respectively. Still, such difference was not significant statistically (p=0.127), either. In contrast, there were provinces where the production of spring kimchi cabbage had significant differences by El $Ni{\tilde{n}}o$ occurrence. For example, El $Ni{\tilde{n}}o$ end years had significantly less spring kimchi cabbage production than El $Ni{\tilde{n}}o$ start years and non El $Ni{\tilde{n}}o$ years in Gangwon (p=0.038) and Gyeongbuk (p=0.053) provinces. It appeared that differences in cabbage production resulted from short sunshine duration, which merits further analysis on the impact of extreme weather condtions during El $Ni{\tilde{n}}o$ years on crop production.

Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information (농장맞춤형 농업기상정보 생산을 위한 소기후 모형 구축)

  • Kim, Dae-Jun;Kim, Soo-Ock;Kim, Jin-Hee;Yun, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제21권3호
    • /
    • pp.146-157
    • /
    • 2019
  • One of the most distinctive features of the South Korean rural environment is that the variation of weather or climate is large even within a small area due to complex terrains. The Geospatial Schemes based on Topo-Climatology (GSTP) was developed to simulate such variations effectively. In the present study, we reviewed the progress of the geospatial schemes for production of farm-scale agricultural weather data. Efforts have been made to improve the GSTP since 2000s. The schemes were used to provide climate information based on the current normal year and future climate scenarios at a landscape scale. The digital climate maps for the normal year include the maps of the monthly minimum temperature, maximum temperature, precipitation, and solar radiation in the past 30 years at 30 m or 270 m spatial resolution. Based on these digital climate maps, future climate change scenario maps were also produced at the high spatial resolution. These maps have been used for climate change impact assessment at the field scale by reprocessing them and transforming them into various forms. In the 2010s, the GSTP model was used to produce information for farm-specific weather conditions and weather forecast data on a landscape scale. The microclimate models of which the GSTP model consists have been improved to provide detailed weather condition data based on daily weather observation data in recent development. Using such daily data, the Early warning service for agrometeorological hazard has been developed to provide weather forecasts in real-time by processing a digital forecast and mid-term weather forecast data (KMA) at 30 m spatial resolution. Currently, daily minimum temperature, maximum temperature, precipitation, solar radiation quantity, and the duration of sunshine are forecasted as detailed weather conditions and forecast information. Moreover, based on farm-specific past-current-future weather information, growth information for various crops and agrometeorological disaster forecasts have been produced.

The inference about the cause of death of Korean Fir in Mt. Halla through the analysis of spatial dying pattern - Proposing the possibility of excess soil moisture by climate changes - (한라산 구상나무 공간적 고사패턴 분석을 통한 고사원인 추정 - 기후변화에 따른 토양수분 과다 가능성 제안 -)

  • Ahn, Ung San;Kim, Dae Sin;Yun, Young Seok;Ko, Suk Hyung;Kim, Kwon Su;Cho, In Sook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제21권1호
    • /
    • pp.1-28
    • /
    • 2019
  • This study analyzed the density and mortality rate of Korean fir at 9 sites where individuals of Korean firs were marked into the live and dead trees with coordinates on orthorectified aerial images by digital photogrammetric system. As a result of the analysis, Korean fir in each site showed considerable heterogeneity in density and mortality rate depending on the location within site. This make it possible to assume that death of Korean fir can occur by specific factors that vary depending on the location. Based on the analyzed densities and mortality rates of Korea fir, we investigated the correlation between topographic factors such as altitude, terrain slope, drainage network, solar radiation, aspect and the death of Korean fir. The density of Korean fir increases with altitude, and the mortality rate also increases. A negative correlation is found between the terrain slope and the mortality rate, and the mortality rate is higher in the gentle slope where the drainage network is less developed. In addition, it is recognized that depending on the aspect, the mortality rate varies greatly, and the mean solar radiation is higher in live Korean fir-dominant area than in dead Korean fir-dominant area. Overall, the mortality rate of Korean fir in Mt. Halla area is relatively higher in areas with relatively low terrain slope and low solar radiation. Considering the results of previous studies that the terrain slope has a strong negative correlation with soil moisture and the relationship between solar radiation and evaporation, these results lead us to infer that excess soil moisture is the cause of Korean fir mortality. These inferences are supported by a series of climate change phenomena such as precipitation increase, evaporation decrease, and reduced sunshine duration in the Korean peninsula including Jeju Island, increase in mortality rate along with increased precipitation according to the elevation of Mt. Halla and the vegetation change in the mountain. It is expected that the spatial patterns in the density and mortality rate of Korean fir, which are controlled by topography such as altitude, slope, aspect, solar radiation, drainage network, can be used as spatial variables in future numerical modeling studies on the death or decline of Korean fir. In addition, the method of forest distribution survey using the orthorectified aerial images can be widely used as a numerical monitoring technique in long - term vegetation change research.