• Title/Summary/Keyword: Sun: CME

Search Result 42, Processing Time 0.028 seconds

RELATIONSHIP BETWEEN CME KINEMATICS AND FLARE STRENGTH

  • MOON Y.-J.;CHOE G. S.;WANG HAIMIN;PARK Y. D.;CHENG C. Z.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.61-66
    • /
    • 2003
  • We have examined the relationship between the speeds of coronal mass ejections (CMEs) and the GOES X-ray peak fluxes of associated flares. Noting that previous studies were possibly affected by projection effects and random association effects, we have considered two sets of carefully selected CME-flare events: four homologous events and four well-observed limb events. In the respective samples, good correlations are found between the CME speeds and the GOES X-ray peak fluxes of the associated flares. A similarly good correlation is found for all eight events of both samples when the CME speeds of the homologous events are corrected for projection effect. Our results suggest that a close relationship possibly exists between CME kinematics and flaring processes.

A STUDY OF SMALL FLARES ASSOCIATED WITH PLASMA BLOBS OUTFLOWING ALONG POST-CME RAYS

  • Kim, Yoo Jung;Kwon, Ryun-Young;Chae, Jongchul
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The recent study of Chae et al. (2017) found a one-to-one correspondence between plasma blobs outflowing along a ray formed after a coronal mass ejection (CME) and small X-ray flares. In the present work, we have examined the spatial configuration and the eruption process of the flares that are associated with the blobs by analyzing EUV images and magnetograms taken by the SDO/AIA and HMI. We found that the main flare and the successive small flares took place in a quadrupolar magnetic configuration characterized by predominant magnetic fields of positive polarity, two minor magnetic fragments of negative polarity, and a curved polarity inversion line between them, which suggests that the formation process of the blobs may be similar to that of the parent CME. We also found that the successive flares resulted in a gradual change of the quadrupolar magnetic configuration, and the relevant migration of flaring kernels. The three-dimensional geometry and the property of the current sheet, that is often supposed to be embedded in an observed post-CME ray, seem to keep changing because of mutual feedback between the successive flares and the temporal change of the magnetic field configuration. Our results suggest that the observed post-CME rays may not reflect the characteristics of the current sheet responsible for the impulsive phase of the flare.

CME-CME Interaction near the Earth

  • Kim, Roksoon;Jang, Soojeong;Joshi, Bhuwan;Kwon, Ryunyoung;Lee, Jaeok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2019
  • In coronagraph images, it is often observed that two successive CMEs merge into one another and form complex structures. This phenomenon, so called CME cannibalism caused by the differences in ejecting times and propagating velocities, can significantly degrade forecast capability of space weather, especially if it occur near the Earth. Regarding this, we attempt to analyze the cases that two CMEs are expecting to meet around 1 AU based on their arrival times. For this, we select 13 CME-CME pairs detected by ACE, Wind and/or STEREO-A/B. We find that 8 CME-CME pairs show a shock structure, which means they already met and became one structure. Meanwhile 5 pairs clearly show magnetic holes between two respective shock structures. Based on detailed investigation for each pair and statistical analysis for all events, we can get clues for following questions: 1) How does the solar wind structure change when they are merging? 2) Are there any systematic characteristics of merging process according to the CME properties? 3) Is the merging process associated with the occurrence of energetic storm particles? 4) What causes errors in calculating CME arrival times? Our results and discussions can be helpful to understand energetic phenomena not only close to the Sun but also near the Earth.

  • PDF

A Comparison of CME Arrival Time Estimations by the WSA/ENLIL Cone Model and an Empirical Model

  • Jang, Soo-Jeong;Moon, Yong-Jae;Lee, Kyoung-Sun;Na, Hyeon-Ock
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.92.1-92.1
    • /
    • 2012
  • In this work we have examined the performance of the WSA/ENLIL cone model provided by Community Coordinated Modeling Center (CCMC). The WSA/ENLIL model simulates the propagation of coronal mass ejections (CMEs) from the Sun into the heliosphere. We estimate the shock arrival times at the Earth using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. We make a comparison between CME arrival times by the WSA/ENLIL cone model and IP shock observations. For the WSA/ENLIL cone model, the root mean square(RMS) error is about 13 hours and the mean absolute error(MAE) is approximately 10.4 hours. We compared these estimates with those of the empirical model by Kim et al.(2007). For the empirical model, the RMS and MAE errors are about 10.2 hours and 8.7 hours, respectively. We are investigating several possibilities on relatively large errors of the WSA/ENLIL cone model, which may be caused by cone model velocities, CME density enhancement factor, or CME-CME interaction.

  • PDF

CME propagation and proton acceleration in solar corona

  • Kim, Roksoon;Kwon, Ryunyoung;Lee, Jaeok;Lario, David
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.53.3-54
    • /
    • 2018
  • Solar Proton Events (SPEs) are the energetic phenomena related particle acceleration occurred in solar corona. Conventionally, they have been classified into two groups as the impulsive and gradual cases caused by reconnection in the flaring site and by shock generated by CME, respectively. In the previous studies, we classified these into four groups by analyzing the proton acceleration patterns in multi-energy channel observation. This showed that acceleration due to the magnetic reconnection may occur in the corona region relatively higher than the flaring site. In this study, we analyzes 54 SPEs observed in the energy band over 25 MeV from 2009 to 2013, where STEREO observations as well as SOHO can be utilized. From the multi-positional observation, we determine the exact time at which the Sun-Earth magnetic field line meets the CME shock structure by considering 3-dimensional structure of CME. Also, we determine the path length by considering the solar wind velocity for each event, so that the SPE onset time near the sun is obtained more accurately. Based on this study, we can get a more understanding of the correlation between CME progression and proton acceleration in the solar coronal region.

  • PDF

KINEMATIC OSCILLATIONS OF POST-CME BLOBS DETECTED BY K-COR ON 2017 SEPTEMBER 10

  • Lee, Jae-Ok;Cho, Kyung-Suk;Nakariakov, Valery M.;Lee, Harim;Kim, Rok-Soon;Jang, Soojeong;Yang, Heesu;Kim, Sujin;Kim, Yeon-Han
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.2
    • /
    • pp.61-70
    • /
    • 2021
  • We investigate 20 post-coronal mass ejection (CME) blobs formed in the post-CME current sheet (CS) that were observed by K-Cor on 2017 September 10. By visual inspection of the trajectories and projected speed variations of each blob, we find that all blobs except one show irregular "zigzag" trajectories resembling transverse oscillatory motions along the CS, and have at least one oscillatory pattern in their instantaneous radial speeds. Their oscillation periods are ranging from 30 to 91 s and their speed amplitudes from 128 to 902 km s-1. Among 19 blobs, 10 blobs have experienced at least two cycles of radial speed oscillations with different speed amplitudes and periods, while 9 blobs undergo one oscillation cycle. To examine whether or not the apparent speed oscillations can be explained by vortex shedding, we estimate the quantitative parameter of vortex shedding, the Strouhal number, by using the observed lateral widths, linear speeds, and oscillation periods of the blobs. We then compare our estimates with theoretical and experimental results from MHD simulations and fluid dynamic experiments. We find that the observed Strouhal numbers range from 0.2 to 2.1, consistent with those (0.15-3.0) from fluid dynamic experiments of bluff spheres, while they are higher than those (0.15-0.25) from MHD simulations of cylindrical shapes. We thus find that blobs formed in a post-CME CS undergo kinematic oscillations caused by fluid dynamic vortex shedding. The vortex shedding is driven by the interaction of the outward-moving blob having a bluff spherical shape with the background plasma in the post-CME CS.

Relationship Between Solar Proton Events and Corona Mass Ejection Over the Solar Cycle 23 (태양 주기 23 기간 동안 태양 고에너지 양성자 이벤트와 코로나 물질 방출 사이의 상관관계)

  • Hwang, Jung-A;Lee, Jae-Jin;Kim, Yeon-Han;Cho, Kyung-Suk;Kim, Rok-Sun;Moon, Yong-Jae;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.479-486
    • /
    • 2009
  • We studied the solar proton events (SPEs) associated with coronal mass ejections (CMEs) during the solar cycle 23 (1997-2006). Using 63 SPE dataset, we investigated the relationship among SPE, flare, and CME, and found that (1) SPE rise time and duration time depend on CME speed and the earthward direction parameter of the CME, and (2) the SPE peak intensity depends on CME speed and X-ray Flare intensity. While inspecting the relation between SPE peak intensity and the direction parameter, we found there are two groups: first group consists of large six SPEs (> 10,000 pfu at > 10 MeV proton channel of GOES satellite) and shows strong correlation (cc = 0.65) between SPE peak intensity and CME direction parameter. The second group has a weak intensity and shows poor correlation between SPE peak intensity and the direction parameter (cc = 0.01). By investigating characteristics of the first group, we found that all the SPEs are associated with very fast halo CME (> 1400km/s) and also they are mostly located at central region and within ${\pm}20^{\circ}$ latitude and ${\pm}30^{\circ}$ longitude strip.

SOLAR ACTIVITY AND SPACE ENVIRONMENT (태양활동과 우주환경)

  • YUN HONG SIK
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 1999
  • The Earth is exposed to constant outflow of the solar wind from the outer layers of the Sun, and violent transient events taking place from active regions increase the energy flux of both radiation and particles leaving the Sun. Thus the space surrounding the Earth is a highly dynamic environment that responds sensitively to changes in radiation, particles and magnetic field arriving from the Sun. Nowadays, it becomes increasingly important to understand how the physical system of Earth-space works and how the space around the Earth connects to interplanetary space. In the present paper we describe how explosive solar events, such as CME(Coronal Mass Ejection) and flares affect the Earth-space environment and how the space weather reacts to them. Practical consequences are presented to demonstrate why a broader view of Earth's environment is greatly needed to cope with modern day's inhabitation problem in a rapidly developing space age.

  • PDF

GEOMETRICAL IMPLICATION OF THE CME EARTHWARD DIRECTION PARAMETER AND ITS COMPARISON WITH CONE MODEL PARAMETERS

  • Moon, Y.J.;Kim, R.S.;Cho, K.S.
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.27-32
    • /
    • 2009
  • Recently, we suggested a CME earthward direction parameter as an important geoeffective parameter that has been demonstrated by front-side halo CME data. In this study, we present the geometrical implication of this parameter by comparing with the parameters from a CME cone model. Major results from this study can be summarized as follows. First, we derive an analytic relationship between the cone model parameters(the half angular width of a cone and the angle between the cone axis and the plane of sky) and the earthward direction parameter. Second, we demonstrate a close relationship between the earthward direction parameter and the cone axis angle using 32 front-side full halo CMEs. Third, we found that there is noticeable inconsistency between the cone axis angles estimated from the cone model fitting to the CMEs and from their associated flare positions, implying that the flare position should not be considered as a good earthward direction parameter. Finally we present several advantages of our earthward direction parameter in terms of the forecast of a geomagnetic storm based on CME parameters.

A NEW METHOD TO DETERMINE THE TEMPERATURE OF CMES USING A CORONAGRAPH FILTER SYSTEM

  • CHO, KYUHYOUN;CHAE, JONGCHUL;LIM, EUN-KYUNG;CHO, KYUNG-SUK;BONG, SU-CHAN;YANG, HEESU
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • The coronagraph is an instrument that enables the investigation of faint features in the vicinity of the Sun, particularly coronal mass ejections (CMEs). So far coronagraphic observations have been mainly used to determine the geometric and kinematic parameters of CMEs. Here, we introduce a new method for the determination of CME temperature using a two filter (4025 Å and 3934 Å) coronagraph system. The thermal motion of free electrons in CMEs broadens the absorption lines in the optical spectra that are produced by the Thomson scattering of visible light originating in the photosphere, which affects the intensity ratio at two different wavelengths. Thus the CME temperature can be inferred from the intensity ratio measured by the two filter coronagraph system. We demonstrate the method by invoking the graduated cylindrical shell (GCS) model for the 3-dimensional CME density distribution and discuss its significance.