• Title/Summary/Keyword: Summer Power

Search Result 400, Processing Time 0.025 seconds

Design and Implementation of Ethereum-based Future Power Trading System (이더리움 기반의 선물(Future) 전력 거래 시스템 설계)

  • Youm, Sungkwan;Lee, Heekwon;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.584-585
    • /
    • 2021
  • As the production of new and renewable energy such as solar and wind power has diversified, microgrid systems that can simultaneously produce and consume have been introduced. In general, a decrease in electricity prices through solar power is expected in summer, so producer protection is required. In this paper, we propose a transparent and safe gift power transaction system between users using blockchain in a microgrid environment. A futures is simply a contract in which the buyer is obligated to buy electricity or the seller is obliged to sell electricity at a fixed price and a predetermined futures price. This system proposes a futures trading algorithm that searches for futures prices and concludes power transactions with automated operations without user intervention by using a smart contract, a reliable executable code within the blockchain network. If a power producer thinks that the price during the peak production period is likely to decrease during production planning, it sells futures first in the futures market and buys back futures during the peak production period to make a profit in the spot market. losses can be compensated. In addition, if there is a risk that the price of electricity will rise when a sales contract is concluded, a broker can compensate for a loss in the spot market by first buying futures in the futures market and liquidating futures when the sales contract is fulfilled.

  • PDF

Investigation of Hydraulic Flow Properties around the Mouths of Deep Intake and Discharge Structures at Nuclear Power Plant by Numerical Model (수치모의를 통한 원자력 발전소 심층 취·배수 구조물 유·출입구 주변에서의 수리학적 흐름특성 고찰)

  • Lee, Sang Hwa;Yi, Sung Myeon;Park, Byong Jun;Lee, Han Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.123-130
    • /
    • 2012
  • A cooling system is indispensable for the fossil and nuclear power plants which produce electricity by rotating the turbines with hot steam. A cycle of the typical cooling system includes pumping of seawater at the intake pump house, exchange of heat at the condenser, and discharge of hot water to the sea. The cooling type of the nuclear power plants in Korea recently evolves from the conventional surface intake/discharge systems to the submerged intake/discharge systems that minimize effectively an intake temperature rise of the existing plants and that are beneficial to the marine environment by reducing the high temperature region with an intensive dilution due to a high velocity jet and density differential at the mixing zone. It is highly anticipated that the future nuclear power plants in Korea will accommodate the submerged cooling system in credit of supplying the lower temperature water in the summer season. This study investigates the approach flow patterns at the velocity caps and discharge flow patterns from diffusers using the 3-D computational fluid dynamics code of $FLOW-3D^{(R)}$. The approach flow test has been conducted at the velocity caps with and without a cap. The discharge flow from the diffuser was simulated for the single-port diffuser and multi-ports diffuser. The flow characteristics to the velocity cap with a cap demonstrate that fish entrainment can significantly be minimized on account of the low vertical flow component around the cap. The flow pattern around the diffuser is well agreed with the schematic diagram by Jirka and Harleman.

Estimation of Pollutant Sources in Dangjin Coal-Fired Power Plant Using Carbon Isotopes (탄소 안정동위원소를 이용한 석탄화력발전소 인근 오염원 기원 추정 : 당진시를 중심으로)

  • Yoon, Soohyang;Cho, Bong-Yeon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.567-575
    • /
    • 2021
  • Residents in Dangjin, South Chungcheong Province, in which large-scale emissions facilities such as coal-fired power plants and steel mills are concentrated, are very much concerned about their health despite the local government's aggressive efforts to improve air quality and reduce greenhouse gases. To understand the impact of coal-fired power plants and external factors on local air pollution, the origins of local pollutants were investigated using stable carbon isotopes that are generally used as tracers of the provenance of fine or ultrafine dust. The origins of the pollutants were analyzed with the data library, built using the seasonally measured data for the two separate locations selected considering the distance from the coal-fired power plant and the analysis of previous studies, and with the back trajectory analysis. As a result of analyzing stable isotope ratios, the tendency of high concentration was found in the order of winter > spring > fall > summer. According to the data matching with the library, the mobile pollutants and open-air incineration had a relatively higher impact on the local air pollution. It is believed that this study, as a pilot study, should focus on securing the reliability of the study results through continuous monitoring and data accumulation.

Effect of Removal of Power Plant Emissions on the characteristics of Ozone Concentration Changes in Summer (화력발전소 배출량 제거에 따른 여름철 O3 농도의 변화 특성)

  • Kim, Dongjin;Jeon, Wonbae;Park, Jaehyeong;Mun, Jeonghyeok
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.149-163
    • /
    • 2021
  • In this study, the changes in ozone (O3) concentrations due to the removal of power plant emissions were analyzed using a community multi-scale air quality (CMAQ) model. Two different CMAQ model simulations, one considering the emissions from the Hadong power plant and one without considering the emissions, were conducted to investigate the effect of the emissions on the changes in the O3 concentrations in the surrounding areas. Subsequently, the CMAQ simulations exhibited an increase in the O3 concentration (25.24%) despite a decrease in the NOx (-18.87%) and volatile organic carbon (VOC, -11.27%) concentrations, which are major O3 precursors. The changes in the NO and O3 concentrations due to the removal of power plant emissions presented a strong negative correlation (r= -0.72). This indicated that the increase in the O3 concentration was mainly attributed to the significantly decreased NO concentration, thus, mitigating the O3 titration reaction (NO+O3→NO2+O2). Additionally, due to the VOC-limited (i.e., NOx-saturated) conditions in the study region, NO affected the O3 concentration, indicating that the O3 concentrations in a particular region are not only proportional to the increase or decrease in emissions. Therefore, an in-depth understanding of the chemical O3 production and loss in a particular region is necessary to accurately evaluate the effect of emission control on the changes in the O3 concentration.

Semantic Segmentation for Roof Extraction using Official Buildings Information (건물 통합 정보를 이용한 지붕 추출 의미론적 분류)

  • Youm, Sungkwan;Lee, Heekwon;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.582-583
    • /
    • 2021
  • As the production of new and renewable energy such as solar and wind power has diversified, microgrid systems that can simultaneously produce and consume have been introduced. . In general, a decrease in electricity prices through solar power is expected in summer, so producer protection is required. In this paper, we propose a transparent and safe gift power transaction system between users using blockchain in a microgrid environment. A futures is simply a contract in which the buyer is obligated to buy electricity or the seller is obliged to sell electricity at a fixed price and a predetermined futures price. This system proposes a futures trading algorithm that searches for futures prices and concludes power transactions with automated operations without user intervention by using a smart contract, a reliable executable code within the blockchain network. If a power producer thinks that the price during the peak production period (Hajj) is likely to decrease during production planning, it sells futures first in the futures market and buys back futures during the peak production period (Haj) to make a profit in the spot market. losses can be compensated. In addition, if there is a risk that the price of electricity will rise when a sales contract is concluded, a broker can compensate for a loss in the spot market by first buying futures in the futures market and liquidating futures when the sales contract is fulfilled.

  • PDF

Development of Prediction Model for Greenhouse Control based on Machine Learning (머신러닝 기반의 온실 제어를 위한 예측모델 개발)

  • Kim, Sang Yeob;Park, Kyoung Sub;Lee, Sang Min;Heo, Byeong Mun;Ryu, Keun Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.749-756
    • /
    • 2018
  • In this study, we developed a prediction model for greenhouse control using machine learning technique. The prediction model was developed using measured data (2016) on greenhouse in the Protected Horticulture Research Institute. In order to improve the predictive performance of model and to ensure the reliability of data, the dimension of the data was reduced by correlation analysis. The dataset were divided into spring, summer, autumn, and winter considering the seasonal characteristics. An artificial neural network, recurrent neural network, and multiple regression model were constructed as a machine leaning based prediction model and evaluated by comparative analysis with real dataset. As a result, ANN showed good performance in selected dataset, while MRM showed good performance in full dataset.

"Knownism"-Bridge-Building Philosophy Between Science and Religion (가지론("Known 사상")-과학과 종교의 가교)

  • 김항묵
    • Journal of the Korean Professional Engineers Association
    • /
    • v.21 no.2
    • /
    • pp.51-57
    • /
    • 1988
  • The writer has worked out his original philosophy both scientific and religious, which he calls "Knownism" The new thought states; the word "known" in "knownism" means "already well-informed in the providence" about the essence of the things, and the true state of the reality, hence the knownism, as the existence of God is set forth as a premise. The knownism is a philosophy unified reasonably the science and the faith into one, for the humans can perceive and realize the essence and the true state, and authorize the truth transcending the experience by the scientific method. The new thought of the knownism is a bridge-building between the natural science and the religious faith. The idea explains that the life is the process to pursue the essence of the things and the god, and the truth is immanent in the original nature of things and in God′s sphere. This thought is a philorophy of possibility to solve the paradigms-to-be such as thinking, faith experience, and supernatural power, so that it presents a vision in the human life as a profitable religious science philosophy. The knownism is much different from agnosticism, skepticism, empiricism, and agnosticism. The grace of God may be detected differently from the supernatural power. The new dark clouds overspread abruptly the summer sky are not new ones but originally derived frosm worn-out water drops. Thus those are called the old clouds. The Korean word "known"(노운) of which pronunciation is same with the English "known" means the old clouds, hence also the name, Knownism. The root of the new clouds is detectable from the preserved old clouds. The old clouds symbolized in the paper indicate the essence and the principles of the things and the fittest, or the key for the solution of the problem in the epistemology, believing that everything has its own, proper nature, the writer sums up his theory by insisting that the humans have to find out the "old clouds" or the "known" in knownism to live eternally either in this world or in other dimensions, though the human beings are transformed into the other phases of life. The writer proclaims through the ideas for the United Nations to fortify the Confederate System of World Nations in order to ensure the world peace and the future of the humans.

  • PDF

Studies on the Exhaust Gas Characteristics of the Vehicle Diesel according to the Test Mode and Ambient Temperature (시험모드 및 대기온도에 따른 경유자동차의 배출가스 특성에 관한 연구)

  • Lee, Jung-Cheon;Jeon, Cheol-Hwan;Kim, Ki-Ho;Oh, Sang-Gi;Park, An-Young
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.93-98
    • /
    • 2016
  • Environmental problems are issued throughout all over the world and which are needed the strength management. In case of the diesel cars are also being developing and studying continuously about various after-treatments device such as EGR, LNT, SCR, DPF and DOC etc. which are used for decreasing $NO_X$ and PM. The air temperature goes up to $39^{\circ}C$ in summer and goes down to $-20^{\circ}C$ in winter because of the location. These changing of the temperature can effect to the engine and harmful exhaust gas discharged and it seems to make the increase - decrease different. The result of the evaluate while changing between the test-mode and the air temperature, which expresses that WLTC-mode is 2.2 times and FTP_75 mode is 4.1~6 times increase to the comparison NEDC-mode of the current regulation. The exhaust characteristic of $NO_X$ by the changing temperature increases in the low temperature and 4.3 times in $14^{\circ}C$ and 21.3 times in $-7^{\circ}C$ with maximum when it compares to $23^{\circ}C$. The fuel efficiency of the different weight car and engine with same data is about 5.7 % in maximum.

Wind characteristics at Sutong Bridge site using 8-year field measurement data

  • Xu, Zidong;Wang, Hao;Wu, Teng;Tao, Tianyou;Mao, Jianxiao
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.195-214
    • /
    • 2017
  • Full-scale wind characteristics based on the field measurements is an essential element in structural wind engineering. Statistical analysis of the wind characteristics at Sutong Cable-stayed Bridge (SCB) site is conducted in this study with the recorded long-term wind data from structural health monitoring system (SHMS) between 2008 and 2015. Both the mean and turbulent wind characteristics and power spectra are comprehensively investigated and compared with those in the current codes of practice, such as the measured wind rose diagram, monthly maximum mean wind speed, turbulence intensity, integral length scale. Measurement results based on the monitoring data show that winds surrounding the SCB site are substantially influenced by the southeast monsoon in summer and strong northern wind in winter. The measured turbulence intensity is slightly higher than the recommended values in specifications, while the measured ratio of lateral to longitudinal turbulence intensity is slightly lower. An approximately linear relationship between the measured turbulence intensities and gust factors is obtained. The mean value of the turbulence integral length scale is smaller than that of typical typhoon events. In addition, it is found that the Kaimal spectrum is suitable to be adopted as the power spectrum for longitudinal wind component at the SCB site. This contribution would provide important wind characteristic references for the wind performance evaluation of SCB and other civil infrastructures in adjacent regions.

Performance test of PVT-water system considering ambient air and circulating water temperature (외기 및 순환수 온도조건을 고려한 PVT-water 시스템의 성능실험)

  • Jeong, Yong-Dae;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.83-88
    • /
    • 2015
  • Purpose: Photovoltaic system is a technique for producing electrical power by utilizing solar energy, which can be used over 20 years with simple maintenance. However, in the case of photovoltaic systems, the energy conversion efficiency decreases as the surface temperature of module increases, compared with other renewable energy technologies. In this regard, PVT module can increase the energy utilization of a composite module as producing heat and electricity simultaneously by using solar energy. Currently, many researches have been promoting in order to develop a high efficiency PVT module in Korea. However, there are a few studies about the performance of the modules corresponding the shape of types and various heat exchangers of the PVT module. In this study, the electrical performance was measured by the change of the ambient temperature and the circulating water temperature using the fabricated PVT module. Method: Experiments were performed using a solar simulator. And this experiment was assumed that the weather condition was in each season, as winter, spring, autumn and summer. It was identified that the I-V curve associated with the change of the experimental conditions and confirmed the change in the electrical characteristics. Result: As a result, it was figured out that the surface temperature and the electrical performance changes in case conditions. The electrical performance was calculated in different temperature condition and the power production was confirmed by the change of module temperature.