• Title/Summary/Keyword: Sum of the Squared Errors

Search Result 43, Processing Time 0.025 seconds

Comparison of Algorithms for Sea Surface Current Retrieval using Himawari-8/AHI Data (Himawari-8/AHI 자료를 활용한 표층 해류 산출 알고리즘 비교)

  • Kim, Hee-Ae;Park, Kyung-Ae;Park, Ji-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.589-601
    • /
    • 2016
  • Sea surface currents were estimated by applying the Maximum Cross Correlation (MCC), Zero-mean Sum of Absolute Distances (ZSAD), and Zero-mean Sum of Squared Distances (ZSSD) algorithms to Himawari-8/Advanced Himawari Imager (AHI) thermal infrared channel data, and the comparative analysis was performed between the results of these algorithms. The sea surface currents of the Kuroshio Current region that were retrieved using each algorithm showed similar results. The ratio of errors to the total number of estimated surface current vectors had little difference according to the algorithms, and the time required for sea surface current calculation was reduced by 24% and 18%, relative to the MCC algorithm, for the ZSAD and ZSSD algorithms, respectively. The estimated surface currents were validated against those from satellite-tracked surface drifter and altimeter data, and the accuracy evaluation of these algorithms showed results within similar ranges. In addition, the accuracy was affected by the magnitude of brightness temperature gradients and the time interval between satellite image data.

The Bayesian Inference for Software Reliability Models Based on NHPP (NHPP에 기초한 소프트웨어 신뢰도 모형에 대한 베이지안 추론에 관한 연구)

  • Lee, Sang-Sik;Kim, Hui-Cheol;Song, Yeong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.389-398
    • /
    • 2002
  • Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process(NHPP) and performs Bayesian inference using prior information. The failure process is analyzed to develop a suitable mean value function for the NHPP ; expressions are given for several performance measure. Actual software failure data are compared with several model on the constant reflecting the quality of testing. The performance measures and parametric inferences of the suggested models using Rayleigh distribution and Laplace distribution are discussed. The results of the suggested models are applied to real software failure data and compared with Goel model. Tools of parameter point inference and 95% credible intereval was used method of Gibbs sampling. In this paper, model selection using the sum of the squared errors was employed. The numerical example by NTDS data was illustrated.

The study for NHPP Software Reliability Model based on Kappa(2) distribution (Kappa(2) NHPP에 의한 소프트웨어 신뢰성 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.689-696
    • /
    • 2005
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the Kappa(2) reliability model, which can capture the nomotonic decreasing nature of the failure occurrence rate per fault. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on sum of the squared errors and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using real data set, SYS2(Allen P.Nikora and Michael R.Lyu), for the sake of proposing two parameter of the Kappa distribution, was employed. This analysis of failure data compared with the Kappa model and the existing model using arithmetic and Laplace trend tests, bias tests is presented.

  • PDF

The Bayesian Analysis for Software Reliability Models Based on NHPP (비동질적 포아송과정을 사용한 소프트웨어 신뢰 성장모형에 대한 베이지안 신뢰성 분석에 관한 연구)

  • Lee, Sang-Sik;Kim, Hee-Cheul;Kim, Yong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.10D no.5
    • /
    • pp.805-812
    • /
    • 2003
  • This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process (NHPP) and performs Bayesian inference using prior information. The failure process is analyzed to develop a suitable mean value function for the NHPP; expressions are given for several performance measure. The parametric inferences of the model using Logarithmic Poisson model, Crow model and Rayleigh model is discussed. Bayesian computation and model selection using the sum of squared errors. The numerical results of this models are applied to real software failure data. Tools of parameter inference was used method of Gibbs sampling and Metropolis algorithm. The numerical example by T1 data (Musa) was illustrated.

RECURRENT PATTERNS IN DST TIME SERIES

  • Kim, Hee-Jeong;Lee, Dae-Young;Choe, Won-Gyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.2
    • /
    • pp.101-108
    • /
    • 2003
  • This study reports one approach for the classification of magnetic storms into recurrent patterns. A storm event is defined as a local minimum of Dst index. The analysis of Dst index for the period of year 1957 through year 2000 has demonstrated that a large portion of the storm events can be classified into a set of recurrent patterns. In our approach, the classification is performed by seeking a categorization that minimizes thermodynamic free energy which is defined as the sum of classification errors and entropy. The error is calculated as the squared sum of the value differences between events. The classification depends on the noise parameter T that represents the strength of the intrinsic error in the observation and classification process. The classification results would be applicable in space weather forecasting.

A Study on Delivery Accuracy Using the Correlation between Errors (오차간의 상관관계를 이용하는 체계명중률 예측에 관한 연구)

  • Kim, Hyun Soo;Kim, Gunin;Kang, Hwan Il
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.299-303
    • /
    • 2018
  • Generally, when predicting the accuracy of the anti-air artillery system, the error is classified as fixed bias, variable bias, and random error. Then the standard deviation on the target is expressed as the square root of the squared sum of each error value which comes from the random error and variable bias and in the case of fixed bias, the mean value is shifted as the sum of errors from the fixed bias. At this time, the variables indicating the displacement of the direction of azimuth and elevation direction with regard to the change of the unit value of each error are weighted. These errors are then used to predict the system's delivery accuracy through a normally distributed integral. This paper presents a method of predicting system accuracy by considering the correlation of errors. This approach shows that it helps to predict the delivery accuracy of the system, precisely.

Effect Analysis of Sample Size and Sampling Periods on Accuracy of Reliability Estimation Methods for One-shot Systems using Multiple Comparisons (다중비교를 이용한 샘플수와 샘플링 시점수의 원샷 시스템 신뢰도 추정방법 정확성에 대한 영향 분석)

  • Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.435-441
    • /
    • 2012
  • This paper provides simulation-based results of effect analysis of sample size and sampling periods on accuracy of reliability estimation methods using multiple comparisons with analysis of variance. Sum of squared errors in estimated reliability measures were evaluated through applying seven estimation methods for one-shot systems to simulated quantal-response data. Analysis of variance was implemented to investigate change in these errors according to variations of sample size and sampling periods for each estimation method, and then the effect analysis on accuracy in reliability estimation was performed using multiple comparisons based on sample size and sampling periods. An efficient way to allocate both sample size and sampling periods for reliability estimation tests of one-shot systems is proposed in this paper from the effect analysis results.

Stereo Matching Using Robust Estimators and Line Masks (강건추정자와 직선마스크를 이용한 스테레오 정합)

  • Kim, Nak-Hyeon;Kim, Gyeong-Beom;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.991-1000
    • /
    • 2000
  • Previous area-based stereo matching algorithms find the disparity by first computing the sum of squared differences (SSD) between corresponding points using a rectangular window, and then searching the position of the minimum SSD within the disparity range. These algorithms generate relatively many matching errors around depth discontinuities, since the SSD function may fail to search for the minimum because of varying disparity profiles in such areas. In this paper, in order to improve the matching accuracy around the depth discontinuities, a new correlation function based on robust estimation technique is proposed for stereo matching. In addition, while previous stereo algorithms utilize a single rectangular window for computing the correlation function, the proposed matching algorithm utilizes 4-directional line masks additionally to reduce the matching errors further. It has been turned out that the proposed algorithm reduces matching errors around depth discontinuities significantly. Experimental results are presented in this paper, comparing the performance of the proposed technique with those of previous algorithms using both synthetic and real images.

The Comparative Study for Software Reliability Models Based on NHPP (NHPP에 기초한 소프트웨어 신뢰도 모형에 대한 비교연구)

  • Gan, Gwang-Hyeon;Kim, Hui-Cheol;Lee, Byeong-Su
    • The KIPS Transactions:PartD
    • /
    • v.8D no.4
    • /
    • pp.393-400
    • /
    • 2001
  • This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process (NHPP). The failure process is analyzed to develop a suitable mean value function for the NHPP ; expressions are given for several performance measure. Actual software failure data are compared with generalized model by Goel dependent on the constant reflecting the quality of testing. The performance measures and parametric inferences of the new models, Rayleigh and Gumbel distributions, are discussed. The results of the new models are applied to real software failure data and compared with Goel-Okumoto and Yamada, Ohba and Osaki models. Tools of parameter inference was used method of the maximun likelihood estimate and the bisection algorithm for the computing nonlinear root. In this paper, using the sum of the squared errors, model selection was employed. The numerical example by NTDS data was illustrated.

  • PDF

A Study on the Performance Improvement of the Auto-Tuning PID Controller Using Gradient Method (경사도 기법을 사용한 PID 제어기의 성능 개선에 관한 연구)

  • Ha, Dong-Ho;Jung, Jong-Dae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.659-661
    • /
    • 1999
  • In this paper, we proposed a simple neural network-based parameter tuning algorithm, which could find the gradients of a certain performance index in the PID parameter spaces. In this process, we had to know the dynamics between input and output of the plant, and we used the Back Propagation Neural network to identify them. To make the parameter updating fast and smooth, we constructed the performance index as the sum of past N-squared plant errors, and applied a batch mode algorithm to update parameters. We performed several experiments with a DC Motor to show the validity of the proposed algorithm.

  • PDF