• Title/Summary/Keyword: Sum of PAH model

Search Result 3, Processing Time 0.018 seconds

PAHs Source Fingerprints for Municipal Incinerator, Motor Vehicle Fuels and Industrial Boilers Emission (발생원별에 따른 PAHs 배출특성)

  • 박찬구;윤중섭;김민영;손종열;모세영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.331-343
    • /
    • 2004
  • The results of individual PAH source profiles that can be applied to receptor model are as follows. The sum of 16 PAH concentrations was 391.41 ng/S㎥ in a tunnel. Phenanthrene was the most abundant compound among 16 PAH, and then pyrene, fluoranthene, anthracene, and naphthalene can be seen in elevated contents. 11,056.61 ng/S㎥ of 16 PAH concentrations in BC oil boiler was two times higher than 6,582.57 ng/S㎥) of those in LNG boiler. Naphthalene was the most abundant compound in both facilities. Phenanthrene, anthracene, and acenaphthylene were the second dominant compound group in order from both facilities. BC oil boiler had relatively high concentration of pyrene compared to LNG boiler that had high concentration of fluorene and did not detect pyrene. The sum of 16 PAH concentrations emitted from MSW incinerators after APCD (air pollution control device) was three times higher than those from MSW incinerators before APCD. However, the concentrations of more than 4-ring PAH compounds (e.g., benzo (a)anthracene) before APCD were higher than those after APCD. This fact implies that PAHs generated by combustion process are eliminated in APCD and they are continuously produced in stack or atmosphere by PAHs precursors.

Seasonal Variation of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) on Anmyeon Island (안면도에서 대기 중 가스상 PAHs의 계절적 변동)

  • An, Joon-Geon;Yim, Un-Hyuk;Shim, Won-Joon;Kim, Gi-Beum;Kim, Seung-Kyu;Yi, Hi-Il
    • Ocean and Polar Research
    • /
    • v.31 no.2
    • /
    • pp.189-198
    • /
    • 2009
  • Passive air samplers with polyurethane foam (PUF) disks were employed to determine seasonal gas phase variation of polycyclic aromatic hydrocarbons (PAHs) in ambient air on Anmyeon island from March 2007 to January 2008. Sum of 13 PAHs ranged between $3.5\;ng/m^3$ and $27.6\;ng/m^3$. Total PAHs during the heating season was 6.2 times higher than non-heating season. The dominant PAHs components during sampling periods were low and middle molecular weight PAHs including phenanthrene, fluoranthene, pyrene and chrysene. Gas exchange fluxes of PAHs across the air-water interface of the Yellow Sea were calculated using a modified two-film exchange model. PAHs fluxes ranged from $196\;ng/m^2/d$ net volatilization during summer to $3830\;ng/m^2/d$ net absorption during winter. Passive air sampler provides a convenient and cost-effective tool for measuring averaged gas phase PAHs, which was successfully used for calculation of gas exchange flux of PAHs in the Yellow Sea.