• Title/Summary/Keyword: Sulphide mineral

Search Result 15, Processing Time 0.016 seconds

Precipitation of Cu as the sulphide from Sulphate solution containing Cu, Ni and Co (구리, 니켈, 코발트 혼합용액으로부터 침전법에 의한 구리의 분리)

  • Park Kyung-Ho;Jung Sun-Hee;Park Jin-Tae;Nam Chul-Woo;Kim Hong-In
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.16-20
    • /
    • 2005
  • The selective sulphide precipitation of copper from sulphate solution containing nickel and cobalt was studied with adding $Na_{2}S$ solution. Precipitation efficiency of copper increased with raising pH of solution and increasing the amount of $Na_{2}S$ added and lowing its concentration. The increase in reaction time and temperature also improved the precipitation of copper. However, attempts to selectively precipitate copper met with limited success because of co-precipitation of nickel and cobalt. With adding $20\%$ $Na_{2}S$, 3 times equivalent of Cu, at pH 1.0 of solution, $25^{\circ}C$ and 30 minutes of reaction time, precipitation efficiencies of copper, nickel and cobalt were $94.1\%$, $4.3\%$ and $4.5\%$ respectively.

Strategies for Development of Seafloor Polymetallic Sulphides in Consideration of International Progress (해저열수광상 개발동향과 우리나라의 대응방안)

  • Park, Seong-Wook;Yang, Hee-Cheol;Jeong, Hyeong-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.271-279
    • /
    • 2008
  • Polymetallic sulphides means hydrothermally formed deposits of sulphide minerals which contain concentrations of metals including, inter alia, copper, lead, zinc, gold and silver. Nautilus is the first company to commercially explore the seafloor polymetallic sulphide deposits. The Company holds exploration licences and exploration applications for more than 370,000 $km^2$ in the jurisdictional seas of Papua New Guinea, Fiji, Tonga, the Solomon Islands and New Zealand along the western Pacific Ocean's Rim of Fire. Neptune Minerals is also a leading explorer and developer in this field, with exploration licences awarded totalling more than 270,000 $km^2$ in the territorial seas or EEZ of New Zealand, Papua New Guinea and the Federated States of Micronesia. These two companies now carry out the most active investment activities for seafloor polymetallic sulphide deposits with a goal of commercial production by 2010. China and Japan carry out exploration activities for the seafloor polymetallic sulphide deposits to secure supplies of strategic metals. China carries out national R&D projects relating to deep sea mineral resources in the world ocean through China Ocean Mineral Resources R&D Association(COMRA). And Japan investigates her own EEZ for exploration of the seafloor polymetallic sulphide deposits. In consideration of aforementioned international activities of coastal nations as well as private companies for exploring the sulphide deposits, Korea shall prepare strategic plans : First, consolidation of the authorities concerned and legislative support; second, determination of main entity of the project; third, securing government's decisive investment of sufficient budget; and lastly, establishment of the mid, long-term plan for development of seafloor polymetallic sulphides deposits.

Mineralogical Characteristics and Removal of Heavy Metals from Gum-poong Mine Tailings (금풍광산(鑛山) 광물(鑛物)찌꺼기의 광물(鑛物)학적 특성(特性) 및 중금속(重金屬) 제거(除去))

  • Cha, Jongmun;Park, Jayhyun;Kang, Heon Chan
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.51-57
    • /
    • 2012
  • The objective of this study was to research the mineralogical characteristics and removal of heavy metals of tailings from Gum-poong mine. From the result of mineralogical analysis, there are several sulphide minerals such as chalcocite, aresenopyrite, pyrite, sphalerite and galena. Cd and Zn have a good positive correlation from the statistical relation between Cd and other heavy metals(Cu, Pb, Zn). Residual heavy metals(As, Cd, Cu, Pb, Zn) from the Gum-poong tailings were removed under the warning criteria from the result of froth flotation with K.A.X.(Potassium Amyl Xanthate) and Aerofloat 211.

Evolution and Mineralizations in the Ockcheon Geosynclinal Zone (옥천지향사대(沃川地向斜帶)의 진화(進化)와 광화작용(鑛化作用))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.4 no.2
    • /
    • pp.77-90
    • /
    • 1971
  • About four hundred deposits of iron, talc, fluorite, tungsten, molybdenum, lead, zinc and other polymetallic mineral deposits were plotted on the Ore Distribution Map of the Ockcheon Geosynclinal Area. These mineral deposits plotted on the map can be divided into the several metallogenic zones by the consideration of their geologic background including the sedimentary and tectonic cycles and the igneous activities in the geosynclinal evolution, as follows: a. Chungju iron and talc zones. b. Cheong-san copper bearing iron sulphide zone c. Kumsan-Muju fluorite-polymetallic zones. d. Cheong-an Puyong and Ein Suckseong gold zone e. Hwang-gan Seolcheon and Sangju gold zones. Chungju iron zone originated in the iron bed in the Kemyongsan Series corresponding to the Pre-Ockcheon Cycle of evolution history. In early period of the Ockcheon Cycle, Hyangsanri quartzite and Munjuri phyllitic formation corresponding to the lower terrigenous sequence were not mineralized while the next sequence of the Samsungsan basic igneous-metamorphic formation and the Changri limestone formation were mineralized by the copper bearing iron sulphide and the fluorite-polymetallic deposits respectively. Two generations of the gold zones are recognized. The earlier generation distributes directionaly in the outside of the Ockcheon sedimentary belt was followed by the earlier grantitic invasion of Jurasic in age, while the later generation scatters at random which was related to the nondirectional Cretaceous granitic intrusion of the Post-Ockcheon Cycle. Conclusively speaking, it was disclosed that the endogenic mineralization in the Ockcheon geosyn clinal zone was not conspicuous in its inner sedimentary belt except its limestone area but in its outer peripheral granitic or gneissic zones, and the related igneous activities occured in the Post-Ockcheon Cycle of evolution history.

  • PDF

Removal of Copper from the Solution Containing Copper, Nickel, Cobalt and Iron (구리, 니켈, 코발트, 철 혼합용액(混合溶液)으로부터 구리의 제거(除去))

  • Park, Kyung Ho;Nam, Chul Woo;Kim, Hyun Ho;Barik, Smruti Prakash
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.48-54
    • /
    • 2013
  • The methods to separate and remove copper in the mixed solution ((399 ppm Cu, 208 ppm Fe, 15.3 g/L Ni, 2.1 g/L Co) with nickel, cobalt and iron were investigated. With hydroxide precipitation method, copper and iron ions were completely precipitated and removed from the solution at pH 7 while some nickel and cobalt also were precipitated. 99.75% copper could be precipitated and removed as copper sulfide from the solution with adding $Na_2S$ (1.25 w/v concentration) of 2 times equivalent of Cu at pH 1. Copper was selectively absorbed on TP 207 ion exchange resin at equilibrium pH 2.0 and could be eluted from copper-loaded resin using 5% $H_2SO_4$.

Geology and Ore deposits of Songgwang Mine (송광광산(松廣鑛山)의 지질광상(地質鑛床))

  • Hong, Man Seup
    • Economic and Environmental Geology
    • /
    • v.2 no.3
    • /
    • pp.58-67
    • /
    • 1969
  • Songgwang lead zinc mine is located in about 12km to the north-east of Jeonju City. Geology of the mine and its visinity is consisted of Jeonju series belonged to so-called Okcheon system, Seodaesan tuff formation, Silla series, and the quartz porphyry intruded into these formations. Jeonju series comprising 3 formations; that is, of Sadaeri, Sindong, and Girinbong. Jeonju series is generally distributed in southern part of the area, striking NNW, and diping NE $30^{\circ}$, or NW $30^{\circ}$. It is deformed to form synclinorium and anticlinorium plunging to the north with low angle. In the northern part of the area, Jeonju series was cut by Sinpeongri-fault of NEE direction near Sinpeongri. In the north side of the fault, it is overturned and shows NEE or NWW strikes and NW $60^{\circ}$ dips. At the west of Songgwangri, it is cut by 3 thrusts; the two are almost parallel each other, and the third oneis manifested by the fact that the lower black shale zone thrusted over the upper limestone. Songgwangri thrust, so named, is a post-mineral fault and its plane represents a premineral slip plane. Enrichment of are took place along the bedding plane or fissure parallel to it, as seen in adit No. 1 or No. 2 along the floor of the thrust, and along the sheared zone or the brecciated zone oblique to the plane near the thrust in crystalline limestone of Sindong formation as observed in the underground levels of inclined slope. Ore minerals are chiefly zincblende, galena, pyrrhotite, arsenopyrite, acompanied pyrite and chalcopyrite, and contain Au and Ag. In earlier stage of mineralization, the limestone was recrystalized, and sulphide minerals were enriched in the· permiable zone said above by pyrometasomatism, and in later stage the limestone was affected chloritization and sericitization. However hydrothermal replacement was weak, so that enrichment did not took place. It seems that minerallizing materials came up through the premineral slip plane and injected, and replaced the limestone in permiable zone said above with sulphide are minerals. Then Songgwangri thrust took place and, the lower black shale zone thrusted upon crystalline limestone.

  • PDF

A Study on Genesis of Alunite Deposits of Jeonnam Area (전남지역(全南地域) 명반석광상(明礬石鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Moon, He Soo
    • Economic and Environmental Geology
    • /
    • v.8 no.4
    • /
    • pp.183-201
    • /
    • 1975
  • The south and southwestern parts of Jeonra-namdo has been known as an alunite province in Korea. The alunite deposits investigated for the present study are Okmaisan, Seongsam, Bugog, Gasado south, Gasado north, Jangsando, Dogcheon and Jungyongri deposits. The main purpose of this study is to depict the genetical origin of the alunite deposits. The rocks distributed in the areas mentioned above consist chiefly of rhyolitic tuff, breccia tuff and andesitic tuff of Cretaceous age which represent different episodes of volcanic activities during Cretaceous epoch. The attitude of bedding of the tuffaceous rocks varies from place to place but generally dips very gently. The alunite deposits are embedded mostly in the rhyolitic tuff so that they appear as layered deposits, this occurrence may be the result of stratigraphic and lithologic controls. The result of this study can be summarized as below. The mineral sequence studied by the mineral paragenesis and the result of the spectrograph anlyses is such that (1) alunite was formed at first and pyrophyllite was nearly contemporaneous with alunite but pyrophyllite formation can be recognized as a secondary mineralization products, (2) kaoline was succeeded to form later and hematite finally deposited, and (3) pyrite was deposited from the begining to the end of the above mineralization period. The compositional change of host rocks is such that CaO, $SiO_2$ and $Na_2O$ were largely removed from the parent rocks and some $Al_2O_3$ and $SO_3$ were transported by the solution so as to enrich the rocks. The sequencial process of such mineralization has resulted in forming those distinguish mineral zones; alunite, kaoline, pyrophyllite, silicifide and sulphide zone which manifest irregular shape. These deposits were formed by hydrothermal solution which was possibly low temperature and contained sulphuric acid originated from $H_2S$ and $SO_2$ gases.

  • PDF

Mono-layer Compositional Analysis of Surface of Mineral Grains by Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS) (TOF-SIMS를 이용한 광물 표면의 단층조직 분석 연구)

  • Kong Bong Sung;Chryssoulis Stephen;Kim Joo Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • Although the bulk composition of materials is one of the major considerations in extractive metallurgy and environmental science, surface composition and topography control surface reactivity, and consequently play a major role in determining metallurgical phenomena and pollution by heavy metals and organics. An understanding of interaction mechanisms of different chemical species at the mineral surface in an aqueous media is very important in natural environment and metallurgical processing. X-ray photoelectron spectroscopy (XPS) has been used as an ex-situ analytical technique, but the material to be analyzed can be any size from $100\;{\mu}m$ up to about 1 cm. It can also measure mixed solids powders, but it is impossible to ascertain the original source of resulting x-ray signals where they were emitted from, since it radiates and scans the macro sample surface area. The study demonstrated the ability of TOF-SIMS to detect individual organic species on the surfaces of mineral particles from plant samples and showed that the TOF-SIMS techniques provides an excellent tool for establishing the surface compositions of mineral grains and relative concentrations of chemicals on mineral species.

Metallogenesis and Petrology of the Gwangyang Gold Deposits and Goheung Copper Deposits (광양금광상(光陽金鑛床), 고흥동광상(高興銅鑛床)의 광상생성(鑛床生成)과 암석학적(岩石學的) 연구(硏究))

  • Park, Young Surk;Shin, Byung Woo
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.91-100
    • /
    • 1984
  • The Gwangyang gold deposits geologically consist of granitic gneiss, metatectic gneiss and porphyroblastic gneiss which correspond to Jirisan gneiss complex. The formations of Gyeongsang system lies unconformably on these gneisses and are intruded by diorite, porphyritic andesite and Bulgugsa granites. Goheung districts are composed of quartz schist, andesitic rock, tuff and granite. The Gwangyang gold deposits are gold bearing fissure filling veins. The vein thickness varies from 15cm to 40cm and they consist of 7-10 layers in parallel. The Goheung copper deposits are sulphide bearing quartz veln which filled the fracture in andesitic rock and biotite granite. The contact zone of these rocks is partially altered. The mineral paragenesis of the Gwangyang and Goheung districts is pyrite, arsenopyrite, pyrrhotite, chalcopyrite, sphalerite, galena, sericite, quartz and calcite. The variation trends of FMA and A'KF triangular diagrams and the differentiation index (norm, Q + Or + Ab) versus oxides diagrams is similar to the Gyeonsang basin igneous rocks. From the trace element analysis of 10 samples of country rocks, wall rocks and veins, the distribution of copper and lead contents display a correlative distribution pattern in relation to gold and silver. Homogenization temperature of fluid inclusions range from $200^{\circ}C$ to $270^{\circ}C$ in quartz from the Gwangyang gold vein and the size of fluid inclusion range from 0.01mm to 0.04mm. The fluid inclusions are mainly one or two phase and the filling degree of the inclusions varies from 85 to 95.

  • PDF