• 제목/요약/키워드: Sulfuric acid anodizing

검색결과 39건 처리시간 0.026초

Al 양극산화에 의한 나노선재용 AAO template제조 (Anodizing of pure Al foil for AAO as a Nanowire Template)

  • 이관희;이화영;정원용
    • 전기화학회지
    • /
    • 제4권2호
    • /
    • pp.47-52
    • /
    • 2001
  • 황산 전해질에서 고순도의 알루미늄 판재를 양극산화 시켜 이방성이 큰 나노기공을 보유한 AAO를 제조하였다. 나노선재를 제조하기 위한 template재료로서 가장 적합한 AAO를 제조하기 위해 AAO의 나노기공의 크기와 분포 등에 영향을 미치는 양극산화 변수의 영향을 조사하였다. 제조된 AAO의 SEM관찰을 통해 나노기공의 직경과 분포를 확인할 수 있었고, AAO를 template로 사용하여 교류 전주법으로 제조한 Fe 나노선재를 TEM 관찰하여 나노기공의 길이와 내부 표면상태를 확인하였다. AAO를 SEM으로 확인한 결과 전해질의 온도나 양극산화 전압 등의 변수에 따라 기공의 크기와 분포의 변화가 분명하게 관찰되었으며, 제조된 나노선재는 평균 길이 $10{\mu}m,\;300\~1000$범위의 종횡비를 갖고 있음이 TEM으로 확인되었다.

다양한 양극산화막 처리방법이 임프란트 골유착에 미치는 영향 (EFFECT OF VARIOUS INODIZING CHARACTERISTICS ON BONE INTEGRATION OF TITANIUM IMPLANT SURFACE DESIGN)

  • 차수련;이준;민승기
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권5호
    • /
    • pp.417-427
    • /
    • 2008
  • The aim of this study is to investigate the effect of anodizing surface to osseointegration of implant by using of resonance frequency analysis (RFA), quantitative and qualitative assessment of an anodically modified implant type with regard to osseous healing qualities. A total of 96 screw-shaped implants were prepared for this study. 72 implants were prepared by electrochemical oxidation with different ways. 24 (group 1 SP) were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid. 24 (group 2GC) were prepared at galvanostatic mode in calcium glycerophosphate and calcium acetate and 24 (group 3 CMP (Calcium Metaphosphate) Coating were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid followed by CMP coating. Rest of 24 (control group were as a control group of RBM surface. Bone tissue responses were evaluated by resonance frequency analysis (RFA) that were undertaken at 2, 4 and 6 weeks after implant placement in the mandible of mini-pig. Group 1 SP (anodized with sulfuric acid and phosphoric acid implants) demonstrated slightly stronger bone responses than control Group RBM. Group 2 GC (anodized surface with calcium glycerophosphate and calcium acetate implants) demonstrated no difference which were compared with control group. Group 3 GMP (anodized and CMP coated implants) demonstrated slightly stronger and faster bone responses than any other implants. But, all observation result of RF A showed no significant differences between experimental groups with various surface type. Histomorphometric evaluation demonstrated significantly higher bone-to-implant contact for group 2 GC. Significantly more bone formation was found inside threaded area for group 2 GC. It was concluded that group 2 GC (anodized surface with calcium glycerophosphate and calcium acetate implants) showed more effects on the bone tissue responses than RBM surface in initial period of implantation. In addition, CMP showed a tendency to promote bone tissue responses.

광촉매용 Ti 양극산화 피막의 조직 및 성장거동 (Microstructure and Growth Behaviors of Ti Anodic Oxide Film for Photocatalysis)

  • 장재명;오한준;이종호;조수행;지충수
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.353-358
    • /
    • 2002
  • The microstructure and growth behaviors of anodic oxide layers on titanium were investigated. $TiO_2$ oxide films were prepared by anodizing at constant voltages of 180 and 200V in sulfuric acid electrolyte. The anodic $TiO_2$ layer formed at 200V showed a cell structure with more irregular pore shapes around the interface between the anodic oxide layer and the substrate titanium compared with that formed at 180V. Irregular shape of pores at the initial stage of anodization seemed to be attributed to spark discharge phenomena which heavily occurred during increasing voltages. The thickness of the anodic oxide film increased linearly at a rate of $1.9{\times}10^{ -1}\mu\textrm{m}$/min. The oxide layers formed at 180 and 200V were composed mainly of anatase structure, and the anodizing process could be suggested as one of fabrication methods of photocatalytic $TiO_2$.

알루미늄 합금 소재의 옥살산 아노다이징 피막 물성 연구 (A Study on the Properties of Anodic Oxide Films Formed on Al Alloys in Oxalic Acid)

  • 정나겸;박지현
    • 한국표면공학회지
    • /
    • 제53권5호
    • /
    • pp.249-256
    • /
    • 2020
  • As the size of manufacturing equipment for LCD and OLED displays increases, replacement of existing heavy stainless steel components with light metals, such as aluminum alloys, is being more important in semiconducting and display manufacturing industries. To use aluminum alloys for components in semiconducting and display industries, it is important to develop a new anodization method for improved performance of anodic oxide films than conventional anodization method based on sulfuric acid. In this work, optimum applied current density and the best sealing methods for anodic oxide films in 3% oxalic acid were explored. Experimental results showed 2.5 A/dm2 is the best applied current density for improved hardness and dielectric breakdown voltage. Sealing of the anodic oxide films further improved their hardness, dielectric breakdown voltage and resistance to HCl, by which application of anodic oxide films become applicable for components in semiconducting and display industries.

양극산화에 의한 다공성 알루미나 막의 제조시 전해질의 영향 (Effect of Electrolyte on Preperation of Porous Alumina Membrane by Anodic Oxidation)

  • 이창우;함영민;강현섭;장윤호
    • 공업화학
    • /
    • 제9권7호
    • /
    • pp.1047-1052
    • /
    • 1998
  • 본 연구에서는 시판용 99.8% 금속알루미늄을 정전류 방식을 이용하여 황산, 수산, 인산 및 크롬산 전해조에서 양극산화를 행하여 다공성 알루미나 막을 제조하였다. 양극산화시 전해액의 종류에 따른 반응온도, 전해액의 농도 및 전류밀도에 따라 형성되는 다공성 알루미나 막의 세공직경과 분포, 막의 두께 및 형태와 결정구조를 조사함으로서 각 전해질 용액하에서의 최적 반응조건을 결정하고 우수한 다공성 알루미나 막을 제조하고자 하였다. 황산, 수산전해질하에서는 한외여과(Ultrafiltration)막이, 인산, 크롬산전해질하에서는 정밀여과(Microfiltration)막의 얻어짐을 알수 있었다. 황산, 수산 및 인산 전해조에서 제조된 막의 결정구조는 무정형임을 알 수 있으며, 크롬산 전해조에서 제조된 막은 ${\gamma}-Al_2O_3$의 결정구조를 보이고 있다.

  • PDF

Al의 양극처리에 관한 연구 (제1보) (전해조건이 피막에 미치는 영향) (Anodizing of Aluminium (Part1) (The effect on film by electrolytical conditions))

  • 이종남;이성주;김회정
    • 한국표면공학회지
    • /
    • 제1권1호
    • /
    • pp.14.1-18
    • /
    • 1967
  • The characteristics of sulfuric acid anodized layer was studied under various Conbitions, acid concentration : 5-20%, temperature : 5-25$^{\circ}C$, bath voltate : 16 volts , bath agitain : mech agitation : mechanical . The Al+++ ion increase in anodizing baty, the film thickness under microscope, the comparative porosity and the thickness were determined. It was found that film thickness and the porosithy which are the main factors of determining andoized layet quality, rule the corrosing and abrasiion tesistance of the film, and that the porosity is increasing in the outerlayer. The formation mechanism was assumed as follows : The film thickness -increase is due to OH_ ion diffusion into compact non-conductive layer and Al+ + OH_ \longrightarrowAl(OH), Al(OH)+ + OH_ \longrightarrowAl(OH)+$_2$ , Al(OH)+$_2$ + OH_ \longrightarrowAl(OH)$_3$., the strong adhesion force is alse due to Al(OH) or Al(OH)$_2$ in transtion layer. And the pore-nucleation is produced by volume change between Al and Al$_2$O$_3$ and activated H$_2$O gas created by large reaction heat of Al+(x) +OH_ \longrightarrowAl(OH)x.

  • PDF

세륨염을 첨가한 황산법 양극산화피막의 오염입자 및 열크랙 거동 (Contamination Particle and Cracking Behavior of the Anodic Oxidation in Sulfuric Acid Containing Cerium Salt)

  • 소종호;윤주영;신재수
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.11-15
    • /
    • 2018
  • The parts of equipment for semiconductor are protected by anodic aluminum oxide film to prevent corrosion. This study investigated contamination particle and cracking behavior of anodic oxidation in sulfuric acid containing cerium salt. The insulating properties of the sample were evaluated by measuring the breakdown voltage. It was confirmed that the breakdown voltage was about 50% higher when the cerium salt was added, and that the breakdown voltage after the heat treatment was 55% and 35% higher at $300^{\circ}C$ and $400^{\circ}C$, respectively. After heating at $300^{\circ}C$ and $400^{\circ}C$, cracks were observed in non cerium and cerium 3mM, and more cracks occur at $400^{\circ}C$ than at $30^{\circ}C$. The amount of contamination particles generated in the plasma is about 45% less than that of non-cerium specimens.

알루미늄 양극산화 피막의 구조 및 형상이 자기적 특성에 미치는 영향 (Effects of structure and morphology of anodized Al thin film on magnetic properties)

  • 권용덕;박용수
    • 한국표면공학회지
    • /
    • 제26권2호
    • /
    • pp.45-54
    • /
    • 1993
  • In this study, magnetic properties of anodized Al film deposited with ferro-magnetic metals in the capacity of perpendicular magnetic recording media were measured and evaluated to find out the role of structure and morphology of the oxide films on magnetic characteristics. The object of this work was to present the conditions of magnetic thin film formation with more superior magnetic property. Anodizing was carried out under various conditions, and then the anodized film were electro-deposited with Co, Ni, Fe and their alloys. Coercive force and residual magnetization in perpendicular direction increased as the pore length of anodized film increased. It was attributed to the increase of the amount of depoisted metals and the ratio of length/diameter of pores. Morphology of anodized films in phosperic acid was not similar to that of sulfuric acid, and thin films in the former solution had perpendcular magnetic anisostropy because of large diameter, irregular length and distribution of the pores. It was found that magnetic properties of the thin films, which had doubled layer of two metals, were dominated by the metal electrodeposited on the surface of the anodized oxide films.

  • PDF

알루미늄 합금의 양극산화 조건에 따른 내구성 평가 (Evaluation of Durability for Al Alloy with Anodizing Condition)

  • 이승준;한민수;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.152-152
    • /
    • 2016
  • Anodizing is a technology to generate thicker and high-quality films than natural oxide films by treating metals via electrochemical methods. It is a technique to develop metals for various uses, and extensive research on the commercial use has been performed for a long time. Aluminum anodic oxide (AAO) is generate oxide films, whose sizes and characteristics depending on the types of electrolytes, voltages, temperatures and time. Electrochemical manufacturing method of nano structure is an efficient technology in terms of cost reduction, high productivity and complicated shapes, which receives the spotlight in diverse areas. The sulfuric acid was used as an anodizing electrolyte, controlling its temperature to $10^{\circ}C$. The anode was 5083 Al alloy with dimension of $5(t){\times}20{\times}20mm$ while the cathode was the platinum. The distance between the anode and the cathode was maintained at 3 cm. Agitation was introduced by magnetic stirrer at 300 rpm to prevent localized temperature rise that hinders stable growth of oxide layer. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition for $10^{\circ}C$, 10 vol.%, respectively. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant rate. In addition, using galvanostatic method, it was maintained at current density of $10{\sim}30mA/cm^2$ for 40 minutes. The cavitation experiment was carried out with an ultrasonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1 mm. The specimen after the experiment was cleaned in an ultrasonic, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the investigation, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with applied current density.

  • PDF

양극산화된 알루미늄의 적외선 복사특성 연구 (A Study on the Infrared Radiation Properties of Anodized Aluminum)

  • 강병철;최정진;김기호
    • 한국표면공학회지
    • /
    • 제35권3호
    • /
    • pp.149-157
    • /
    • 2002
  • Spectral emissivity depends on the surface conditions of the materials. The mechanisms that affect the spectral emissivity in anodic oxide films on aluminum were investigated. The aluminum specimens were anodized in a sulfuric acid solution and the thickness of the resulting oxide film formed changed with the anodizing time. FT-IR spectrum analysis identified the anodic oxide film as boehmite ($Al_2$$O_3$.$H_2$O). Both the infrared emisivity and reflectivity of the anodized aluminum were affected by the structure of the anodic oxide film because Al-OH and Al-O-Al have a pronounced absorption band in the infrared region of the spectrum. The presence of an anodic oxide film on aluminum caused a rapid drop in the infrared reflectivity. An aluminum surface in the clean state had an emissivity of approximately 0.2. However, the infrared emissivity rapidly increased to 0.91 as the thickness of the anodic oxide film increased.