• Title/Summary/Keyword: Sulfur substitution

Search Result 33, Processing Time 0.021 seconds

A Study on Application of Desulfurization Technology in Cement Production Process (시멘트 생산 공정 내 탈황기술 적용 가능성 연구)

  • Youmin Lee;Chae-wook Lim;Teawoo Lee;Hyung-Suhk Suh;Jun-Ho Kil
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.3-15
    • /
    • 2024
  • Environmental awareness is rising worldwide. however, cement manufacturing facilities use recycled resources to improve raw material and fuel substitution rates, contributing to environmental issues such as waste disposal. The emission of sulfur oxides (SOx), an air pollutant, has been regulated by limestone as raw material in cement manufacturing. However, the impact of increasing use of recycled resources on future facility processes and environmental changes is unclear. Therefore, the cement manufacturing facilities require desulfurization-related technologies and research. In this study, we investigated the applicability of desulfurization technology to cement manufacturing facilities and demonstrated various approaches to applying this technology using byproducts generated in cement manufacturing.

Characterization and deposition of Cu2ZnSnS4 film for thin solar cells via sol-gel method (Sol-gel법에 의한 박막태양전지용 Cu2ZnSnS4 박막의 증착과 특성)

  • Kim, Gwan-Tae;Lee, Sang-Hyun;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.127-133
    • /
    • 2012
  • To achieve low-cost and high-efficiency of thin-film solar cells applications, the sol-gel method that can be coated on a large area substrate, obtain homogeneous thin films of high purity was used. We studied structural and optical characteristics versus annealing temperature of $Cu_2ZnSnS_4$ which has kesterite structure by substitution low-cost sulfur (S) instead of high-cost selenium (Se). By analyzing XRD patterns, main peak was observed at $2{\theta}=28.5^{\circ}$ when Zn/Sn ratio is 0.8/1.2. And when we observed kesterite structure which has orientation of (112) direction, the more annealing temperature increase the bigger strength of (112) direction is. $Cu_2ZnSnS_4$ thin film showed characteristics of kesterite structure at $550^{\circ}C$. And when we calculated lattice constant, a = 5.5047 and $c=11.014{\AA}$ as same JCPDS (Joint Committee on Powder Standards) data measured. We measured optical transmittance to analyze optical characteristics. Optical transmittance was lower than 65 % at visible ray (${\lambda}=380{\sim}770nm$).

Petrochemistry and Environmental Geochemistry of Shale and Coal from the Daedong Supergroup, Chungnam Coal Field, Korea (충남탄전, 대동누층군의 셰일과 탄질암에 관한 암석화학 및 환경지구화학적 특성)

  • Lee, Chan Hee;Lee, Hyun Koo;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.417-431
    • /
    • 1997
  • Characteristics of sedimentary rocks and enrichment of toxic elements in shale and coal from the Chungnam coal field were investigated based upon geochemistry of major, trace and rare earth elements. Shale and coal of the area are interbedded along the Traissic to the Jurassic Daedong Supergroup, which can be subdivided into grey shale, black shale and coal. The coal had been mined, however all the mines are abandonded due to the economic problems. The shale and coal are characterized by relatively low contents of $SiO_2$, and $Al_2O_3$ and high levels of loss-on-ignition (LOI), CaO and $Na_2O$ in comparison with the North American Shale Composite (NASC). Light rare earth elements (La, Ce, Yb and Lu) are highly enriched with the coal. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in shale and coal range from 30.0 to 351.8 and from 4.2 to 106.8, which have partly negative correlations against $SiO_2/Al_2O_3$ (1.24 to 6.06), respectively. Those are suggested that controls of mineral compositions in shale and coal can be due to substitution and migration of those elements by diagenesis and metamorphism. Shale and coal of the area may be deposited in terrestrial basin deduced from high C/S (39 to 895) and variable composition of organic carbon (0.39 to 18.40 wt.%) and low contents of reduced sulfur (0.01 to 0.05 wt.%). These shale and coal were originated from the high grade metamorphic and/or igneous rocks, and the rare earth elements of those rocks are slightly influenced with diagenesis and metamorphism on the basis of $Al_2O_3$ versus La, La against Ce, Zr versus Yb, the ratios of La/Ce (0.38 to 0.85) and Th/U (3.6 to 14.6). Characteristics of trace and rare earth elements as Co/Th (0.07 to 0.86), La/Sc (0.31 to 11.05), Se/Th (0.28 to 1.06), V/Ni (1.14 to 3.97), Cr/V (1.4 to 28.3), Ni/Co (2.12 to 8.00) and Zr/Hf (22.6~45.1) in the shale and coal argue for inefficient mixing of the simple source lithologies during sedimentation. These rocks also show much variation in $La_N/Yb_N$ (1.36 to 21.68), Th/Yb (3.5 to 20.0) and La/Th (0.31 to 7.89), and their origin is explained by derivation from a mixture of mainly acidic igneous and metamorphic rocks. Average concentrations in the shale and coal are As=7.2 and 7.5, Ba=913 and 974, Cr=500 and 145, Cu=20 and 26, Ni=38 and 35, Pb=30 and 36, and Zn=77 and 92 ppm, respectively, which are similar to those in the NASC. Average enrichment indices for major elements in the shale (0.79) and coal (0.77) are lower than those in the NASC. In addition, average enrichment index for rare earth elements in coal (2.39) is enriched rather than the shale (1.55). On the basis of the NASC, concentrations of minor and/or environmental toxic elements in the shale and coal were depleted of all the elements examined, excepting Cr, Pb, Rb and Th. Average enrichment indices of trace and/or potentially toxic elements (As, Cr, Cu, Ni, Pb, U and Zn) are 1.23 to 1.24 for shale and 1.06 to 1.22 for coal, respectively.

  • PDF