• Title/Summary/Keyword: Sulfur compounds

Search Result 561, Processing Time 0.024 seconds

Evaluation of Dark Spots Formated on the High Temperature Metal Filter Elements (고온 금속필터 element 표면에 생성된 반점에 대한 평가)

  • Park, Seung-Chul;Hwang, Tae-Won;Moon, Chan-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.171-178
    • /
    • 2008
  • Metal filter elements were newly introduced to the high temperature filter(HTF) system in the low- and intermediate-level radioactive waste vitrification plant. In order to evaluate the performance of various metal materials as filter media, elements made of AISI 316L, AISI 904L, and Inconel 600 were included to the test set of filter elements. At the visual inspection to the elements performed after completion of each test, a few dark spots were observed on the surface of some elements. Especially they were found much more at the AISI 316L elements than others. To check the dark spots are the corrosion phenomena or not, two kinds of analyses were performed to the tested filter elements. Firstly, the surfaces or the cross sections of filter specimens cut out from both normal area and dark spot area of elements were analyzed by SEM/EDS. The results showed that the dark spots were not evidences of corrosion but the deposition of sodium, sulfur and silica compounds volatilized from waste or molten glass. Secondly, the ring tensile strength were analyzed for the ring-shape filter specimens cut out from each kind of element. The result obtained from the strength tested showed no evidence of corrosion as well. Conclusionally, depending on the two kinds of analysis, no evidences of corrosion were found at the tested metal filter elements. But the dark spots formed on the surface could reduce the effective filtering area and increase the overall pressure drop of HTF system. Thus, continuous heating inside filter housing up to dew point will be required normally. And a few long-period test should be followed for the exact evaluation of corrosion of the metal filter elements.

  • PDF

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.

Comparison of Ingredients and Antioxidant Activity of the Domestic Regional Wolfiporia extensa (국내 지역별 매립 복령의 성분 및 항산화 활성 비교)

  • Choi, Su-Hee;Lee, Seung-Jin;Jo, Woo-Sik;Choi, Jong-Woon;Park, Seung-Chun
    • The Korean Journal of Mycology
    • /
    • v.44 no.1
    • /
    • pp.23-30
    • /
    • 2016
  • This study was conducted for comparison of ingredients, phytochemical compounds and antioxidant activity of Wofiporia extensa cultured in Gangwon-do, Gyeongsang-do, and Jeolla-do. Three contents of Wofiporia extensa were analyzed as oxygen (46~48%), carbon (38~39%), hydrogen (6.05~6.1%) and nitrogen (0.17~0.21%). The mineral contents of 50% ethanol Wofiporia extensa extracts were measured as sulfur (S) 145~149 ppm, Magnesium (Mg) 69~72 ppm, phosphorus (P) 122~154 ppm and calcium (Ca) 210.61~509.98 ppm. Wofiporia extensa from Gyeongsang-do (509.98 ppm) contained a significantly higher quantity of Ca than that from Gangwon-do (210.62 ppm) and Jeolla-do (223.88 ppm). In the gas chromatograph-mass spectrometry (GC-MS) analysis, oleic acid was identified in three 50% ethanol Wofiporia extensa extracts. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay for antioxidant activity, the $IC_{50}$ values of Wofiporia extensa cultured in Gangwon-do, Gyeongsang-do and Jeolla-do were calculated as 2.966 mg/mL, 23.03 mg/mL, and 4.16 mg/mL and 3.521 mg/mL, 12.17 mg/mL, and 7.40 mg/mL. In the ferric reducing antioxidant power (FRAP) assay, the $IC_{50}$ values of Wofiporia extensa cultured in Gangwon-do, Gyeongsang-do, Jeolla-do were 6.585 mg/mL, 19.06 mg/mL, and 18.97 mg/mL, respectively. In summary, Wofiporia extensa cultured in Gangwon-do had stronger antioxidant activity and higher concentration of oleic acid than that of Geyongsang-do and Jeolla-do. However, Wofiporia extensa cultured in Geyongsang-do contained a much higher concentration of Ca than that of Gangwon-do and Jeolla-do.

Effects of Immersion Liquids Containing Citrus junos and Prunus mume Concentrate and High Hydrostatic Pressure on Shelf-life and Quality of Scomber japonicus during Refrigerated Storage (유자(Citrus junos), 매실(Prunus mume) 농축액을 첨가한 침지액과 초정수압의 병행처리가 고등어(Scomber japonicus)의 냉장 저장 중 저장성 및 품질에 미치는 영향)

  • Kang, Bo-Kyeong;Kim, Koth-Bong-Woo-Ri;Kim, Min-Ji;Bark, Si-Woo;Pak, Won-Min;Kim, Bo-Ram;Ahn, Na-Kyung;Choi, Yeon-Uk;Byun, Myung-Woo;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.10
    • /
    • pp.1555-1564
    • /
    • 2014
  • This study investigated the effects of combined treatment of immersion liquids (adjusted pH 4.5 with Citrus junos concentrate (CL), pH 5.5 with Prunus mume concentrate (PL), or no pH adjustment, pH 6.5, control) and high hydrostatic pressure (HHP, 450 MPa) on shelf-life and quality of mackerel. In this study, we measured changes in viable cell counts, pH level, volatile basic nitrogen, thiobarbituric acid reactive substances, color analysis, volatile organic compounds, and sensory evaluation of mackerel at $4^{\circ}C$ for 20 days. CL/HHP and PL/HHP treatments reduced viable cell counts by 3 log cycles during storage compared to the control. Mackerel treated with CL/HHP and PL/HHP showed significantly lower TBARS and VBN levels as compared to the control. After combined treatment, lightness and whiteness increased but redness decreased. VOCs tests showed that contents of alcohol, acid, and ketones in mackerel fillet treated with CL/HHP and PL/HHP were relatively reduced. Especially, CL/HHP and PL/HHP suppressed production of sulfur. In the sensory evaluation, aroma, taste, salinity, hardness, and springiness of mackerel treated with combined HHP showed higher scores than the control. These results suggest that immersion liquids and HHP treatments may increase shelf-life of mackerel and maintain quality during storage at $4^{\circ}C$.

The Effect of Glutathione on High Dose Cisplatin-Induced Cellular Toxicity in Non-small Cell Lung Cancer Cell Lines (비소세포폐암 세포주에서 고용량 Cisplatin 세포독성에 대한 Glutathione의 효과)

  • Lee, Seung-Il;Boo, Gwi-Beom;Jang, Dai-Yong;Chung, Ki-Young;Seo, Jeoung-Gyun;Lee, Byeong-Lai;Chung, Jong-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.5
    • /
    • pp.463-474
    • /
    • 2002
  • Background : This study was designed to examine how glutathione, one of the nucleophilic sulfur compounds, effects the cisplatin cellular toxicity in the non-small cell lung cancer cell lines and normal lung epithelial cell line. Materials and Methods : Three cultured cell lines, the lung adenocarcinoma cell(NCL-H23), the lung squamous carcinoma cell(SK-MES-1) and the normal lung epithelial cell(L-132) line were exposed to various concentrations of cisplatin with or without glutathione. The relative viability was estimated as a means of measuring the cisplatin cellular toxicity using the MTT method. Results : In NCI-23, the response to cisplatin was sensitive but glutathione markedly increased the relative survival of the tumor cells by removing the antitumor effect of cisplatin. In both SK-MES-1 and L-132, the responses to cisplatin were less sensitive, and the chemoprotective effect of glutathione compared to and equal cisplatin dose was significantly higher in L-132 than in SK-MES-1(p<0.05). Conclusion : The protective effectes of of glutathione on cisplatin-induced cellular toxicity is more significant in normal lung epithelial cells than in squamous carcinoma cells.

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Comparison Study of the Pulmonary Function and Serum Carboxyhemoglobin Level Between the Traffic Policmen and Clerk Policemen (교통경찰과 비 교통경찰의 폐기능과 혈중 Carboxyhemoglobin 수치에 대한 비교연구)

  • Kim, Sung Min;Cheon, Gyu Rak;Kim, Young Wook;Kim, Joon Hyung;Lee, Ho Hak;Hong, Soon Chang;Lee, Seung Hee;Park, Sang Joon;Chung, Joon Oh;Kim, Yun Kwon;Kim, So Yon;Kim, Young Jung;Cho, Min Koo;Lee, Gwon Jun;Lee, Kyung In
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.6
    • /
    • pp.560-569
    • /
    • 2003
  • Background : A large number of pollutants such as sulfur dioxide, nitric oxide, carbon monoxide, particulate matter, and ozone influence on the body. These pollutants put a burden on the lung and the sequelae resulting from the oxidative stress are thought to contribute to the development of fibrotic lung disease, emphysema, chronic bronchitis and lung cancer. Also, carbon monoxide generated from the incomplete combustion of carbon-containing compounds is an important component of air pollution caused by traffic exhaust fumes and has the toxic effect of tissue hypoxia and produce various systemic and neurologic complications. The objective of this study is to compare the difference of pulmonary function and serum carboxyhemoglobin(CO-Hb) level between the traffic policemen and clerk policemen. Method : Three hundred and twenty-nine of traffic policemen, and one hundred and thirty clerk policemen were included between 2001 May and 2002 August. The policemen who took part in this study were asked to fill out a questionnaire which included questions on age, smoking, drinking, years of working, work-related symptoms and past medical history. The serum CO-Hb level was measured by using carboxyoximeter. Pulmonary function test was done by using automated spirometer. Additional tests, such as elecrocardiogram, urinalysis, chest radiography, blood chemistry, and CBC, were also done. Results : $FEV_1(%)$ was $97.1{\pm}0.85%$, and $105.7{\pm}1.21%$(p<0.05). FVC(%) was $94.6{\pm}0.67%$, and $102.1{\pm}1.09%$, respectively(p<0.05). Serum CO-Hb level was $2.4{\pm}0.06%$, and $1.8{\pm}0.08%$(p<0.05). After correction of confounding factors (age, smoking), significant variables were FVC(%), $FEV_1(%)$ and serum CO-Hb level(%)(p<0.05). Conclusion : Long exposure to air pollution may influence the pulmonary function and serum CO-Hb level. But, further prospective cohort study will be needed to elucidate detailed influences of specific pollutants on pulmonary function and serum carboxyhemoglobin level.

Beneficial Effect of Korea Red Ginseng on Halitosis; Attenuation of H2S Induced Inflammatory Mediators and cystathionine γ-lyase Expression (고려홍삼의 구강악취 억제기능; H2S 생성에 따른 염증매개 유전자 및 cystathionine γ-lyase의 약화기능)

  • Choi, Ki-Seok;Lee, So-Jung;Lee, Jeong-Sang;Hong, Kyung-Sook;Kim, Jeong-Gon;Kim, Yoon-Jae;Hahm, Ki-Baik
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.367-377
    • /
    • 2009
  • Halitosis is a generally accepted marker of diseases in the oral cavity and of systemic and gastrointestinal disorders. Based on these authors' previous findings (that (1) there is a close association between H. pylori infection and halitosis; (2) Korea red ginseng may suppress the colonization of H. pylori, fight H. pylori-induced cytotoxicity, and impose significant anti-inflammatory actions in patients with chronic gastritis; and (3) H. pylori infection is linked with the generation of significant levels of volatile sulfur compounds (VSCs), and the levels of VSCs correlate significantly with H. pylori-associated mucosal damages), in the current study, the authors documented the molecular mechanisms of Korea red ginseng's efficacy in ameliorating halitosis. When the RAW 264.7 cells were treated with the $H_2S$ releasing compound NaHS, the mRNA expression of cystathionine ${\gamma}$-lyase (CSE), IL-6, COX-2, and iNOS were more significantly induced compared with the vehicle-treated group. The cytoskeletal components of ezrin's and moesin's mRNA expressions were elevated by NaHS treatment accompanied by the activation of MAPK, p38, and ERK. Korea red ginseng pretreatment reduced both the NaHS-induced CSE expression and the proinflammatory genes (e.g., IL-6, COX-2, and iNOS) in a concentration-dependent manner. The ERM expression and the phosphorylation of p38 were also significantly reduced by Korea-red-ginseng pretreatment. Overall, Korea red ginseng pretreatment imposed significant anti-inflammatory effects through the downregulation of the NaHS-triggered proinflammatory gene expression, CSE, and ERM mRNA expression. Korea red ginseng could thus be said to be a key remedy of halitosis and to be effective in relieving gastric inflammation.

Comparison of Flavor Characteristics and Palatability of Beef Obtained from Various Breeds (품종별 쇠고기의 풍미특성과 기호성 비교)

  • Park, Hyung-Il;Lee, Moo-Ha;Chung, Myung-Sub
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.500-506
    • /
    • 1994
  • For comparison of beef quality, four kinds of beef (Korean native cattle beef, dairy cattle beef, imported beef, cross-bred beef) were investigated through tenderness, juiciness and flavor related components measurement and organoleptic tests. Flavor related chemical components such as NPN, IMP, free fatty acid and free amino acids were analyzed, water holding capacity, contents of hydroxyproline and intramuscular fat were measured for evaluation of beef tenderness. Instron was also used for measuring beef tenderness as an objective method. Triangle test and descriptive analysis test were conducted for comparison and evaluation of preference of various beef samples. In hardness analysis using Instron, imported and cross-bred beefs had higher value than that of Korean native cattle or dairy cattle beef. Water holding capacity and pH of Korean cattle beef was higher than that of others. The intramuscular fat content of Korean cattle beef was highest, so it was expected juicier than other beef. In flavor related compound analysis, NPN content of Korean native cattle beef was the lowest, which shows it spent the least time among sample meats after slaughter. IMP, hypoxantine and inosine were most abundant in Korean native cattle beef. In free amino acids analysis showed that the proportion of basic acid and aromatic acid content of Korean native cattle beef was highest, whereas that of sulfur containing amino acid of imported beef was highest. TBA value of Korean native cattle beef was the lowest, and analysis of fatty acid composition revealed that the proportion of unsaturated fatty acid of Korean native cattle beef was higher than imported and dairy cattle beef, but similar to cross-bred beef. Organoleptic test was performed by triangle test and descriptive analysis. In triangle test, most panelist could distinguish Korea native cattle beef from imported beef and cross-bred beef, imported beef from cross-bred beef. In descriptive analysis which relys on subjective standards of panelists, there was no difference among beef in aroma, flavor and tenderness except juiciness. Even though contents of non volatile flavor compounds in Korean native cattle beef were higher than those of other beef samples, there were no significant differences in subjective panel test. The results showed that Korean consumers do not have common standards for beef quality evaluation.

  • PDF

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.