• Title/Summary/Keyword: Sulfur compound

Search Result 231, Processing Time 0.031 seconds

A study on the air pollutant emission trends in Gwangju (광주시 대기오염물질 배출량 변화추이에 관한 연구)

  • Seo, Gwang-Yeob;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.1-26
    • /
    • 2009
  • We conclude the following with air pollution data measured from city measurement net administered and managed in Gwangju for the last 7 years from January in 2001 to December in 2007. In addition, some major statistics governed by Gwangju city and data administered by Gwangju as national official statistics obtained by estimating the amount of national air pollutant emission from National Institute of Environmental Research were used. The results are as follows ; 1. The distribution by main managements of air emission factory is the following ; Gwangju City Hall(67.8%) > Gwangsan District Office(13.6%) > Buk District Office(9.8%) > Seo District Office(5.5%) > Nam District Office(3.0%) > Dong District Office(0.3%) and the distribution by districts of air emission factory ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%). That by types(Year 2004~2007 average) is also following ; Type 5(45.2%) > Type 4(40.7%) > Type 3(8.6%) > Type 2(3.2%) > Type 1(2.2%) and the most of them are small size of factory, Type 4 and 5. 2. The distribution by districts of the number of car registrations is the following ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%) and the distribution by use of car fuel in 2001 ; Gasoline(56.3%) > Diesel(30.3%) > LPG(13.4%) > etc.(0.2%). In 2007, there was no ranking change ; Gasoline(47.8%) > Diesel(35.6%) > LPG(16.2%) >etc.(0.4%). The number of gasoline cars increased slightly, but that of diesel and LPG cars increased remarkably. 3. The distribution by items of the amount of air pollutant emission in Gwangju is the following; CO(36.7%) > NOx(32.7%) > VOC(26.7%) > SOx(2.3%) > PM-10(1.5%). The amount of CO and NOx, which are generally generated from cars, is very large percentage among them. 4. The distribution by mean of air pollutant emission(SOx, NOx, CO, VOC, PM-10) of each county for 5 years(2001~2005) is the following ; Buk District(31.0%) > Gwangsan District(28.2%) > Seo District(20.4%) > Nam District(12.5%) > Dong District(7.9%). The amount of air pollutant emission in Buk District, which has the most population, car registrations, and air pollutant emission businesses, was the highest. On the other hand, that of air pollutant emission in Dong District, which has the least population, car registrations, and air pollutant emission businesses, was the least. 5. The average rates of SOx for 5 years(2001~2005) in Gwangju is the following ; Non industrial combustion(59.5%) > Combustion in manufacturing industry(20.4%) > Road transportation(11.4%) > Non-road transportation(3.8%) > Waste disposal(3.7%) > Production process(1.1%). And the distribution of average amount of SOx emission of each county is shown as Gwangsan District(33.3%) > Buk District(28.0%) > Seo District(19.3%) > Nam District(10.2%) > Dong District(9.1%). 6. The distribution of the amount of NOx emission in Gwangju is shown as Road transportation(59.1%) > Non-road transportation(18.9%) > Non industrial combustion(13.3%) > Combustion in manufacturing industry(6.9%) > Waste disposal(1.6%) > Production process(0.1%). And the distribution of the amount of NOx emission from each county is the following ; Buk District(30.7%) > Gwangsan District(28.8%) > Seo District(20.5%) > Nam District(12.2%) > Dong District(7.8%). 7. The distribution of the amount of carbon monoxide emission in Gwangju is shown as Road transportation(82.0%) > Non industrial combustion(10.6%) > Non-road transportation(5.4%) > Combustion in manufacturing industry(1.7%) > Waste disposal(0.3%). And the distribution of the amount of carbon monoxide emission from each county is the following ; Buk District(33.0%) > Seo District(22.3%) > Gwangsan District(21.3%) > Nam District(14.3%) > Dong District(9.1%). 8. The distribution of the amount of Volatile Organic Compound emission in Gwangju is shown as Solvent utilization(69.5%) > Road transportation(19.8%) > Energy storage & transport(4.4%) > Non-road transportation(2.8%) > Waste disposal(2.4%) > Non industrial combustion(0.5%) > Production process(0.4%) > Combustion in manufacturing industry(0.3%). And the distribution of the amount of Volatile Organic Compound emission from each county is the following ; Gwangsan District(36.8%) > Buk District(28.7%) > Seo District(17.8%) > Nam District(10.4%) > Dong District(6.3%). 9. The distribution of the amount of minute dust emission in Gwangju is shown as Road transportation(76.7%) > Non-road transportation(16.3%) > Non industrial combustion(6.1%) > Combustion in manufacturing industry(0.7%) > Waste disposal(0.2%) > Production process(0.1%). And the distribution of the amount of minute dust emission from each county is the following ; Buk District(32.8%) > Gwangsan District(26.0%) > Seo District(19.5%) > Nam District(13.2%) > Dong District(8.5%). 10. According to the major source of emission of each items, that of oxides of sulfur is Non industrial combustion, heating of residence, business and agriculture and stockbreeding. And that of NOx, carbon monoxide, minute dust is Road transportation, emission of cars and two-wheeled vehicles. Also, that of VOC is Solvent utilization emission facilities due to Solvent utilization. 11. The concentration of sulfurous acid gas has been 0.004ppm since 2001 and there has not been no concentration change year by year. It is considered that the use of sulfurous acid gas is now reaching to the stabilization stage. This is found by the facts that the use of fuel is steadily changing from solid or liquid fuel to low sulfur liquid fuel containing very little amount of sulfur element or gas, so that nearly no change in concentration has been shown regularly. 12. Concerning changes of the concentration of throughout time, the concentration of NO has been shown relatively higher than that of $NO_2$ between 6AM~1PM and the concentration of $NO_2$ higher during the other time. The concentration of NOx(NO, $NO_2$) has been relatively high during weekday evenings. This result shows that there is correlation between the concentration of NOx and car traffics as we can see the Road transportation which accounts for 59.1% among the amount of NOx emission. 13. 49.1~61.2% of PM-10 shows PM-2.5 concerning the relationship between PM-10 and PM-2.5 and PM-2.5 among dust accounts for 45.4%~44.5% of PM-10 during March and April which is the lowest rates. This proves that particles of yellow sand that are bigger than the size $2.5\;{\mu}m$ are sent more than those that are smaller from China. This result shows that particles smaller than $2.5\;{\mu}m$ among dust exist much during July~August and December~January and 76.7% of minute dust is proved to be road transportation in Gwangju.

Antioxidant and Antimicrobial Activities of Ethanol Extract from Six Vegetables Containing Different Sulfur Compounds (황 함유 채소 에탄올 추출물의 항산화 및 항균활성)

  • Kim, Kyoung-Hee;Kim, Hye-Joung;Byun, Myung-Woo;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.5
    • /
    • pp.577-583
    • /
    • 2012
  • This study investigated the antioxidant activities, and antimicrobial activity $in$ $vitro$ of an 80% ethanol extract from garlic, daikon, leek, ginger, onion, and green onion, which are widely-used ingredients in Korean food that contain sulfur. The total polyphenol content in ginger and leek extracts showed a high value ($233.63{\pm}4.59$ and $220.98{\pm}10.56$ mg/g GAE) and onions, leeks, garlic, and daikon followed by with $69.07{\pm}1.42$, $68.83{\pm}2.11$, $19.41{\pm}0.40$, $19.05{\pm}03.32$ mg/g GAE, respectively. DPPH radical scavenging activity was highest with ginger extracts ($1.57{\pm}0.15$ mg/mL as $IC_{50}$) followed in order of decreasing activity by leeks, onions, daikon, green onions, and garlic. The results of ABTS radical scavenging activity and FRAP value showed higher antioxidant activity in extracts from ginger and leek. The order of vegetables with most to least prevalent ABTS radical scavenging activity was green onions, onions, garlic, and finally daikon. From greatest to least FRAP value, the relevant vegetables were green onions, onions, daikon, and garlic (p<0.05). Ginger extracts showed promise against seven strains of microbes: $Bacillus$ $cereus$, $Bacillus$ $subtillis$, $Staphylococcus$ $aureus$, $Lactobacillus$ $plantarum$, $Escherichia$ $coli$, $Salmonella$ $enterica$, and $Pseudomonas$ $aeruginosa$. Garlic extracts (5 mg/disc) showed strong antimicrobial activity against $B.$ $cereus$ (22.3 mm) and $E.$ $coli$ (24.3 mm). Extracts of both onion and green onion showed antimicrobial activity against only $E.$ $coli$ (12.7 and 10.3 mm) and $B.$ $cereus$ (12.0 and 12.5 mm) at 10 mg/disc, and the inhibition zone diameter from extracts of garlic and leeks were 18.0 mm and 10.4 mm vs. $L.$ $plantarum$ at 10 mg/disc. This study showed positive antioxidant activities for ginger and leeks, and positive antimicrobial activities for leeks and garlic. These sulfur-containing vegetables are widely used in Korean food. Leeks especially could serve as a functional food preservative.

Sulfur Dioxide, Mineral Contents and Physicochemical Properties Generated during Manufacture of Bamboo Salt (죽염 제조공정에 따른 이산화황, 미네랄 함량 및 이화학적 특성)

  • Kim, Hag-Lyeol;Lee, Seong-Jae;Lee, Jung-Hee;Kim, In-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1248-1256
    • /
    • 2014
  • The purpose of this study was to investigate the mechanisms of behind $SO_2$ formation and elevated cause of reducing power in purple bamboo salt (PBS) along with an analysis of physicochemical properties, content of sulfur compounds, oxidation reduction potential (ORP), mineral contents of salt type (MSS, mudflat solar salt; BS, bamboo salt), and addition of raw bamboo (RB). $SO_2$ content of 630 ppm was detected in PBS. $SO_2$ was not detected in MSS, BS, or RB, whereas $SO_2$ (782 ppm) from $K_2SO_4$ was detected after heating a NaCl, KCl, $MgCl_2$, $MgSO_4$, MgO, $CaCl_2$, $K_2SO_4$, and $FeSO_4$ with RB. $SO_2$ content of BS increased with baking time, and it originated from BSRB1 (13.88 ppm) to BSRB4 (109.13 ppm). $SO_3{^{2-}}$ originated only from MSSRB4 and BSRB2~BSRB4. Sulfate ion content decreased along with increasing $SO_2$ and sulfite ion contents. ORP increased with baking time of MSS and BS, and it was present at higher levels in BSRB4 (-211.40 mV) of BS than MSS. Insoluble content was higher in BS than MSS. Further, Ca, K, and Mg ion contents decreased in MSS and increased in BS with baking time. BSRB4 had 1.4 fold higher levels of Ca, 1.5 fold higher levels of Mg, and 1.8 fold higher levels of K than BS. Li, Al, Mn, Fe, and Sr in MSS as well as Al, Fe, and Ni in BS increased with baking time. Anions (Cl, $NO_3$, and Br) and heavy metals (Pb, Cd, Hg, and As) between MSS and BS were not significantly different. These results suggest that the reducing power of BS was due to $SO_2$ and sulfite ion. To increase the amounts of these compounds and reducing power, higher melting temperature and longer baking time are necessary along with BS, which is created by the addition of RB to roasted salt.

Seasonal concentrations and emission characteristics of odorous compounds produced from swine facilities in Jeju Island (제주지역 양돈시설에서 발생하는 악취물질의 계절별 농도 및 배출 특성)

  • Song, Jung-Min;Yang, Hyo-Sun;Ko, Han-Jong;Kim, Young Ju;Kim, Ki Youn;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.364-374
    • /
    • 2013
  • The major ten odorous compounds have been analyzed from four swine facilities in Jeju Island, in order to investigate the emission characteristics and odor contribution by different ventilation systems and manure treating types. From the study, the concentrations of $NH_3$ and TMA were high at the enclosed ventilation and scraper type facilities in winter season, and the sulfur compounds ($H_2S$, $CH_3SH$, DMS, DMDS) as well as volatile fatty acids (PA, n-BA, n-VA, iso-VA) showed high concentrations at the enclosed ventilation type facilities during winter season. The concentrations of nitrogen and sulfur compounds were high at slurry manure treat facilities. However, the volatile fatty acids (VFA) were relatively high in the scraper type swine facilities. The odor quotients of n-BA were high at four swine facilities, therefore the volatile fatty might be considered as the major odor causing compounds. Moreover the sum of odor quotient (SOQ) was high at the enclosed ventilation and scraper type facilities, and the odor contributions by volatile fatty acids were high in all swine facilities.

Development of Meat-like Flavor by Maillard Reaction with Addition of Natural Flavoring Materials (천연 조미향상물질의 첨가에 의한 Maillard 반응에서 Meat-like Flavor의 개발)

  • Ko, Soon-Nam;Nam, Hee-Sop;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.839-846
    • /
    • 1997
  • Addition of three natural flavoring materials, hydrolyzed vegetable protein (HVP), hydrolyzed animal protein (HAP) and yeast extract (YE), into 0.2 M cystine-0.1 M lactose-0.1 M maltose solution (control) was studied for development of meat-like flavor by Maillard reaction. The HVP, HAP and YE were added individually at various concentrations and were mixed at selected concentration in order to compare their effects. The absorbance, color, sensory characteristics and volatile compounds of the solutions after the reaction at $100^{\circ}C$ for 8 hr were measured. The results showed that the absorbances of reaction solution at 420 nm and 278 nm were increased as reaction time and the concentration of the natural flavoring material increased. Also ‘L’ values of reaction solutions added with HVP, HAP or YE decreased while the ‘b’ value increased slightly. From the results of sensory evaluation 1.16% HVP, 0.94% HAP, 1.48% YE or 1.16% HVP + 0.94% HAP were selected as the appropriate substrates for the meat-like flavor development. The volatile compounds identified by GC/MS for the control and those added with 1.16% HVP or 1.16% HVP+0.94% HAP were 1 hydrocarbons, 9 aldehydes, 5 ketones, 1 ester, 5 alcohols, 2 aromatics(benzene), 2 furans, 1 sulfur compound.

  • PDF

Oral malodor-reducing effects by oral feeding of Weissella cibaria CMU in Beagle dogs (Weissella cibaria CMU 경구투여가 비글의 구취 저하에 미치는 효과)

  • Do, Kyung-Hyo;Park, Ho-Eun;Kang, Mi-Sun;Kim, Jong-Tae;Yeu, Ji-Eun;Lee, Wan-Kyu
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.2
    • /
    • pp.87-94
    • /
    • 2018
  • This study assessed the effects of Weissella cibaria (W. cibaria) CMU on oral health in male and female beagles (n = 18) by measuring oral malodor and periodontal disease-related parameters (calculus, plaque, and gingivitis indices). Oral malodor and indicators of periodontal disease were assessed in five treatment groups: negative control (scaling and 0.24 mg of maltodextrin, n = 3), positive control (0.24 mg of maltodextrin, n = 3), and W. cibaria CMU groups (each n = 4) at low (CMU-L, $2{\times}10^7$ colony forming unit [CFU]), medium (CMU-M, $2{\times}10^8CFU$), and high (CMU-H, $2{\times}10^9CFU$) concentrations. After feeding with W. cibaria CMU for 6 weeks, total volatile sulfur compound concentrations in the CMU-L ($2.0{\pm}1.04ng/10mL$), CMU-M ($2.4{\pm}1.05ng/10mL$), and CMU-H ($2.6{\pm}1.33ng/10mL$) groups were significantly lower than in the positive control group ($3.2{\pm}1.65ng/10mL$). Also, CMU-L ($1.4{\pm}0.83ng/10mL$) and CMU-H ($1.9{\pm}1.14ng/10mL$) groups had methyl mercaptan levels lower than that in the positive control group ($2.4{\pm}1.21ng/10mL$) at week 2. The plaque index was significantly lower in the CMU-H group ($4.5{\pm}0.28$) than in the positive control group ($5.9{\pm}1.08$) at week 6. W. cibaria CMU could be useful as a novel oral hygiene probiotics for reducing volatile sulfur compounds production and inhibiting plaque growth in companion animals.

Volatile Flavor Compounds in Commercial Black Garlic Extracts (시판 흑마늘추출액의 휘발성 향기성분)

  • Jeon, Seon-Young;Baek, Jeong-Hwa;Jeong, Eun-Jeong;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.1
    • /
    • pp.116-122
    • /
    • 2012
  • Volatile flavor compounds derived from four black garlic extracts purchased in a local market were analyzed for the purpose of quality assessment. A total of 68 compounds was detected in samples using solid phase microextraction (SPME)/GC/MSD, and they were mainly sulfur-containing compounds, including three unknown compounds (21), aldehydes (10), furans (7), alcohols (6), aromatic compounds (7), ketones (4), acids (4), nitrogen-containing compounds (3), esters (2), and miscellaneous compounds (4). 2,6-Dimethyl-4-heptanone having a fruity-sweet odor was the most abundant in all of the samples. Six sulfur-containing compounds including allyl sulfide, 4-methyl-1,2,4-thiazole, 1,3,5-trithiane, unknown I (RI 1564), unknown II (RI 1565), and unknown III (RI 1613) were detected in all of the samples and appeared to contribute to the garlic-like odor. Particularly, three aldehydes (3-methylbutanal, benzaldehyde, phenylacetaldehyde), four furans (furfural, 2-acetylfuran, 5-methyl-2-furfural, furfural alcohol), and others (2,6-dimethylpyrazine, acetic acid) formed through a Maillard reaction during garlic aging were detected in all of the samples, and they contributed to the characteristic burnt, sweet, and sour flavors of black garlic extracts.

The Effects of Cure System on Vulcanization Reaction Constant and Physical Properties of Rubber Compounds (가황시스템 변화가 배합고무의 가황반응속도 및 물리적 특성에 미치는 영향)

  • Lee, Seag;Park, Nam Cook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.419-426
    • /
    • 1999
  • In this study, the reaction rate constant, activation energy, total crosslinking density, elastic constant, cure properties ($t_5,\;t_{90}$), modulus, and abrasion resistance of rubber compounds were investigated as a function of cure temperatures, cure systems and reinforcing filler loadings. Reaction rate constants showed strong dependence on thc carbon black loading, cure temperature and cure system, and increased sharply with increasing the reaction temperatures. The lowest activation energy was obtained in the efficient cure (EC) system which corresponds to the high level of sulfur to accelerator ratio, and the activation energy was decreased with decreasing the carbon black loadings. The change of carbon black loadings directly affects the modulus and abrasion resistance, but the change of cure system showed various effects on the rubber compounds. Increased carbon black loadings showed the high modulus, improved abrasion resistance and short scorch time but decrease in crosslinking density and elastic constant. Higher crosslinking density and elastic constant were shown in the EC cure system regardless of carbon black loadings, but scorch timc ($t_5$) was not affected by the change of the ratio of sulfur to accelerator. Rapid optimum cure time ($t_{90}$) were showen in the EC cure system. Also, the equivalent cure curve coefficient of rubber compound was 0.96 for conventional cure (CC) system, and 0.94 for semi-efficient cure (SEC) and EC system regardless carbon black loadings. As regarding the abrasion resistance, wear volume showed the logarithmic increase for the loaded weight.

  • PDF

Changes in Nutrient Levels of Aqueous Extracts from Radish (Raphanus sativus L.) Root during Liquefaction by Heat and Non-heat Processing

  • Bae, Ro-Na;Lee, Young-Kyu;Lee, Seung-Koo
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.409-416
    • /
    • 2012
  • The amount of cellular components including soluble sugars, amino acids, organic acids and glucosinolates (GLS) was investigated during radish root processing to develop a radish beverage. The radish root was divided into two parts, white and green tissue, and processed separately by extracting the juice from the fresh tissue and from the boiled tissue to compare differences in the components content among the preparations. The overall palatability of both the fresh and boiled extracts from the green part of the radish was higher than that of the same extracts from the white part. The sweetness of extract by boiling increased and its pungency decreased, thereby the palatability increased by being compared to the fresh radish extract. The sweetness was affected by sucrose not by glucose or fructose of monosaccharides by showing different sucrose contents according to treatment comparing palatability. Malic acid was identified as primary organic acid, and the content was higher in both the fresh and boiled extracts from the white part than in the extracts from the green part of the radish. The fresh extract from the green part of the radish contained more essential amino acids, such as threonine and valine, and more hydrophilic amino acids including glutamic acid, aspartic acid, and arginine than those of the fresh extract from the white part, suggesting the green fresh part is more palatable than the white fresh part. The main sulfur compound was ethylthiocyanate in radish, and others were butyl isothiocyanate, dimethyl-disulfide, and 4-methylthio-3-butylisothiocyanate. The four GLS were detected much more in the fresh green and fresh white parts of the radish because they evaporated during boiling. The contents of the four sulfur compounds were higher in the white fresh part than in the green fresh part, which is likely the reason the pungency was higher and the palatability was lower in the white fresh part than in the green fresh part of the radish. The ascorbic acid content was higher in the fresh extract compared to the boiled extracts from both the green and white parts. Taken together, these findings indicate that fresh radish extract is superior to obtain in terms of retaining desirable nutritional and functional components for health.

A Scientific Analysis of Gold Threads Used in Donggungbi-Wonsam(Ceremonial Robe Worn by a Crown Princess, National Folklore Cultural Heritage No.48) (동궁비 원삼에 사용된 금사의 과학적 분석)

  • Lee, Jang-Jon;An, Boyeon;Han, Kiok;Lee, Ryangmi;Yoo, Ji Hyun;Yu, Ji A
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.525-535
    • /
    • 2021
  • This study identified material properties through scientific analysis on Jikgeumdan(satin with gold threads) from Donggungbi-Wonsam and the gold threads used in the embroidery. The Donggungbi-Wonsam's base of gold threads were estimated to have used mulberry fiber's Korean paper(Hanji) because non-wood-based fibers were observed. The X-ray spectrometer showed that the Tongsuseulan of Donggungbi-Wonsam was a flat gold thread of pure gold and Jikgeumdan of flat silver thread of its Saekdong and Hansam. High sulfur levels were detected in the flat silver thread, which appeared to have formed silver sulfide by either manufacturing process using sulfur or conservation environment. he dragon insignia's embroidery is also described as two types twisted gold threads; pure gold and alloying-gold and silver. while dragon insignia's border line is decorated with a twisted gold thread of pure gold. In particular, it was investigated that adhesives such as an animal glue, a protein-based compound by gas chromatography mass spectrometry. Additionally, XRF and Raman spectroscopy analysis on the mixture substances between the metal surface and the base paper of gold threads identified talc and quartz in the gold threads and Seokganju(hematite) in the flat silver threads.