• 제목/요약/키워드: Sulfonate ion

Search Result 30, Processing Time 0.027 seconds

Spectral and Thermal Studies of Transition Metal PSSA Ionomers

  • Shim, Il-Wun;Risen, William M. Jr.
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.368-376
    • /
    • 1988
  • Transition metal PSSA ionomers containing Co(II), Ni(II), Cr(III), Ru(III), and Rh(III) are investigated by IR, Far-IR, UV-Vis and DSC. Reliable IR Spectroscopic criteria are established for assessing the degree of ion-exchange of PSSA ionomers and the local structures around metal cations in them. In the hydrated transition metal PSSA ionomers, the ionic groups are solvated by water molecules and there is no significant interactions between sulfonate group and metal cations. The visible spectra indicated that metal cations are present as [M$(H_2O)_6$]$^{n+}$ with Oh symmetry. Their $T_g$ values increase as the extent of ionic site concentration increases, but there is no direct dependence of $T_g$ on the nature of metal cations or their oxidation states. Thus, the water content in PSSA ionomer is found to have dominant influence on $T_g$ of hydrated transition metal PSSA ionomers. Dehydration of the hydrated transition metal PSSA ionomers results in direct interaction between ionic groups and significant color changes of the ionomers due to the changes of the local structures around metal cations. On the base of spectral data, their local structures are discussed. In case of dehydrated 12.8 and 15.8 mol % transition metal PSSA ionomers, no glass transition is observed in 25-$250^{\circ}C$ region and this is believed to arise from the formation of highly crosslinked structures caused by direct coordination of sulfonate groups of metal cations. In the 6.9 mol % transition metal PSSA ionomers, the glass transition is always observed whether they are hydrated or dehydrated and this is though to be caused by the sufficient segmental mobility of the polymer backbone.

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

Antioxidant Activity of Honeydew Honey Produced by Apis mellifera L. (양봉꿀벌이 생산한 감로꿀의 항산화 활성)

  • Se-Gun, Kim;Hyo-Young, Kim;Hong-Min, Choi;Hye-Jin, Lee;Sang-Mi, Han
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.669-673
    • /
    • 2022
  • To evaluate biological activity of honeydew honey produced by Apis mellifera L. in Korea, we measured antioxidant activity by using DPPH (1,1-diphenyl-2-picryl hydrazyl), ABTS [2,2-azobis(3-ethylbenzothiazoline-6-sulfonate)], FRAP (Ferric reducing antioxidant power), and total polyphenol content assays. Korean honeydew honey respectively scavenged 26% and 86% of DPPH and ABTS radicals at the highest concentration of 10 mg/mL. In the result of FRAP assay, Korean honeydew honey showed activity (126 µM of FRAP value) to reduce Fe3+ to Fe2+. Total polyphenol content was 73.41 mg GAE/kg. Korean honeydew honey exhibited excellent antioxidant activity due to having high radicals scavenging ability and reducing power of ferric ion as well as the presence of phenolic compounds. These findings suggest that Korean honeydew honey has great potential as a functional food material.

A Study on the Fabrication of Fe-Co Magnetic Fluid from the Waste Pickling Liquor of Steel

  • Kim, Young-Sam;Lee, Jong-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.149-153
    • /
    • 2001
  • This paper describes on the fabrication of Fe-Co hydrophilic magnetic fluids from the waste pickling liquor of steel. By adding with HNO$_3$in the waste liquor oxidation is proceeded from Fe$^{3+}$ion at 6$0^{\circ}C$ with air blowing. Ultra-fine Co-ferrite particles with the mean particle size of 50 $\AA$ were produced at pH 12 after adjusting the ratio of Fe$^{3+}$Co$^{2+}$=7/3(wt%) and Fe-Co particles with the mean particle size of 94 $\AA$ were produced by reducing the Co-ferrite particle with H$_2$at the temperature of 50$0^{\circ}C$. After triple adsorption of oleic acid dodecyl benzene sulfonate(D.B.S.) and tetra methyl ammonium(T.M.A.) ions on the surface of Fe-Co particles Fe-Co hydrophilic magnetic fluid was produced by dispersing the Fe-Co particles in ethylene glycol solution. The magnetization of the Fe-Co hydrophilic magnetic fluid increased with increasing the Fe-Co concentration. The magnetic fluid containing 70% (g/cc) Fe-Co showed 73 emu/g in magnetization at the magnetic intensity of 10 kOe.kOe.e.

  • PDF

Organic-inorganic Nano Composite Membranes of Sulfonated Poly(Ether Sulfone-ketone) Copolymer and $SiO_2$ for Fuel Cell Application

  • Lee, Dong-Hoon;Park, Hye-Suk;Seo, Dong-Wan;Kim, Whan-Gi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.487-488
    • /
    • 2006
  • Novel bisphenol-based wholly aromatic poly(ether sulfone-ketone) copolymer containing pendant sulfonate groups were prepared by direct aromatic nucleophilic substitution polycondensation of 4,4-difluorobenzophenone, 2,2'-disodiumsulfonyl-4,4'-fluorophenylsulfone (40mole% of bisphenol A) and bisphenol A. Polymerization proceeded quantitatively to high molecular weight in N-methyl-2-pyrrolidinone at $180^{\circ}C$. Organic-inorganic composite membranes were obtained by mixing organic polymers with hydrophilic $SiO_2$ (ca. 20nm) obtained by sol-gel process. The polymer and a series of composite membranes were studied by FT-IR, $^1HNMR$, differential scanning calorimetry (DSC) and thermal stability. The proton conductivity as a function of temperature decreased as $SiO_2$ content increased, but methanol permeability decreased. The nano composite membranes were found to posse all requisite properties; Ion exchange capacity (1.2meq./g), glass transition temperatures $(164-183\;^{\circ}C)$, and low affinity towards methanol $(4.63-1.08{\times}10^{-7}\;cm^2/S)$.

  • PDF

Yttrium-doped and Conductive Polymer-Coated High Nickel Layered Cathode Material with Enhanced Structural Stability

  • Shin, Ji-Woong;Lee, Seon-Jin;Nam, Yun-Chae;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.272-278
    • /
    • 2021
  • In this study, high nickel layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries were modified by yttrium doping and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) coating. The effects of yttrium doping and PEDOT:PSS coating on the structural and electrochemical properties of the LiNi0.8Co0.1Mn0.1O2 cathode material were investigated and compared. The substitution of nickel with an electrochemically inert yttrium was confirmed to be successful in stabilizing the layered structure framework. Moreover, coating the surfaces of the LiNi0.8Co0.1Mn0.1O2 particles with a conductive polymer, PEDOT:PSS, improved the capacity retention, thermal stability, and impedance of the cathode material by increasing its ionic and electric conductivities.

Significance of Urease Distribution across Helicobacter pylori Membrane

  • Gang, Jin-Gu;Yun, Soon-Kyu;Choi, Kyung-Min;Lim, Wang-Jin;Park, Jeong-Kyu;Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.317-325
    • /
    • 2001
  • For heuristic purposes, the relative ratio of urease contents inside and outside cells was surveyed using nine ureB+ strains of Helicobacter pylori. the ratio of the enzyme specific activity appeared to vary greatly between the various H. pylori strains, ranging from 0.5 to 2.5. Besides the above compartment, urease was also richly found in the membrane fraction, especially in either peripheral or integral form. The urease distribution across the H. pylori membrane was significantly influenced by the ambient pH; the specific activity of external urease was highest at pH 5.5 with a narrow plateau, whereas the internal specific activity was highest within a pH range of 4.5 to 6.5 with a broad plateau. These finding strongly suggest that H. pylori urease is secretory and responded to the external pH. However, at pH 4.0 or below, no urease activity was detected in either the internal or external compartment, although an increase in the color development with 2,4,6-trinitrobenzene sulfonate (TNBS) was observed. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that these phenomena may be related to a specific proteolysis in certain proteins, including urease or ${\gamma}$-glutamyl transpeptidase. Interestingly, the effect of ammonium ions n alleviating the enzyme inactivation inside the H. pylori cells was remarkably similar to that of D-glucose. In addition, it would appear that the cation acted as a surrogate of not only $Na^+$ but also $K^+$ thereby increasing the H. pylori P-type ATPase activity. This is of great interest, as it implies that the urease action in H. pylori is indispensible at any locus.

  • PDF

Characteristics of Equilibrium, Kinetic and Thermodynamic for Adsorption of Acid Blue 40 by Activated Carbon (활성탄에 의한 Acid Blue 40 흡착에 있어서 평형, 동력학 및 열역학적 특성)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.592-599
    • /
    • 2018
  • The kinetics and thermodynamics of the adsorption of acid blue 40 from an aqueous solution by activated carbon were examined as a function of the activated carbon dose, pH, temperature, contact time, and initial concentration. The adsorption efficiency in a bathtub was increased at pH 3 and pH 11 due to the presence of sufonate ions ($SO_3{^-}$) and amine ions ($NH_2{^+}$). The equilibrium adsorption data were fitted to the Langmuir, Freundlich and Temkin isotherms. The results indicated that the Langmuir model provides the best correlation of the experimental data. The separation factor of the Langmuir and Freundlich model showed that the adsorption treatment of acid blue 40 by activated carbon could be an effective adsorption process. The adsorption energy determined by the Temkin equation showed that the adsorption step is a physical adsorption process. Kinetics analysis of the adsorption process of acid blue 40 on activated carbon showed that a pseudo second order kinetic model is more consistent than a pseudo second order kinetic model. The estimated activation energy was 42.308 kJ/mol. The enthalpy change (80.088 J/mol) indicated an endothermic process. The free energy change (-0.0553 ~ -5.5855 kJ/mol) showed that the spontaneity of the process increased with increasing adsorption temperature.

Miscibility Improvement in PP and EPDM Blends via Introducing Specific Interaction (특정상호작용에 의한 폴리프로필렌/EPDM 블렌드의 상용성 향상)

  • Cho, Young-Wook;Go, Jin-Hwan;Lee, Won-Ki;Lee, Jin-Kook;Cho, Won-Jei;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.35 no.1
    • /
    • pp.46-52
    • /
    • 2000
  • Miscibility improvement between polypropylene(PP) and ethylene-propylene-diene-terpolymer (EPDM) was studied by introducing specific interaction into both polymers. PP was modified by grafting maleic anhydride(MAH) onto backbone, leading to MAH-grafted PP(PP-g-MAH). Sulfonated EPDM ionomer neutralized with bivalent zinc cation(ZnSEPDM) was used as one component. The blends of PP-g-MAH and ZnSEPDM were prepared at $200^{\circ}C$ in Brabender Roller Mixer. Fourier transform-infrared(FT-IR) spectroscopic and dynamic mechanical studies have been performed to investigate the miscibility. FT-IR spectral peak corresponding to carbonyl group in PP-g-MAH and that to sulfonate group in ZnSEPDM were shifted to lower and higher frequency with increasing ZnSEPDM content, respectively, in the blends. Glass transition temperature of ZnSEPDM was increased up to 70wt.% of ZnSEPDM, and again decreased above 70wt.%. It can be concluded from the shift of FT-IR characteristic peaks and the changes of glass transition temperatures that the miscibility between PP and EPDM was improved via introducing specific interaction, i.e., dipole-ion interaction.

  • PDF

Poly(arylene ether ketone) block copolymer prepared through sulfonation process for polymer electrolyte membrane fuel cell (술폰화 공정을 통해 제조한 고분자 전해질형 연료전지용 폴리(아릴렌 이서 케톤) 블록 코폴리머)

  • Jang, Hyeri;Nahm, Keesuk;Yoo, Dongjin
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.66-72
    • /
    • 2016
  • In this study, a sulfonated poly(arylene ether ketone) block copolymer was prepared from hydrophilic oligomer and hydrophobic oligomer. The structure of the prepared membrane was characterized by $^1H$-NMR, FT-IR and GPC. The $M_w$(weight-average molecular weights) of the polymer was $209,700g\;mol^{-1}$ and the molecular weight distribution($M_w/M_n$) of 1.25 was obtained. The prepared membrane showed excellent thermal stability with gradual weight loss up to $200^{\circ}C$. The proton conductivity of SPAEK block copolymer reached the maximum of $9.0mS\;cm^{-1}$ at $90^{\circ}C$ under 100% relative humidity (RH). From the observed results, it is necessary to do more aggressive attempt to study the possibility of application as an ion-conductive composite electrolyte.