• Title/Summary/Keyword: Sulfonamide계 항생물질

Search Result 3, Processing Time 0.014 seconds

Adsorption Characteristics of Sulfonamide Antibiotic Compounds in GAC Process (GAC 공정에서의 Sulfonamide계 항생물질 흡착특성)

  • Son, Hee-Jong;Jung, Jong-Moon;Roh, Jae-Soon;Yu, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.401-408
    • /
    • 2008
  • Adsorption performance of sulfonamide antibiotic compounds such as sulfadimethoxine(SDM), sulfachloropyridazine(SCP), sulfamethazine(SMT), sulfathiazole(STZ) and sulfamethoxazole(SMX) on granular activated carbon(GAC) was evaluated in this study. The coal-based activated carbon was found to be more effective than other carbons in adsorption of sulfonamide antibiotic compounds. The wood-based activated carbon was less effective than coconut- and coal-based carbon in adsorption nevertheless having larger pore volume and specific surface area than others carbons. The maximum adsorption capacities(X/M) of coal-based activated carbon for the five sulfonamide species was 1.3$\sim$1.5 and 1.8$\sim$2.1 times larger than coconut- and wood-based activated carbon, respectively. Carbon usage rates (CUR) of coal-, coconut- and wood-based activated carbons for SCP were 3.55 g/day, 4.29 g/day and 6.47 g/day, respectively. Similar results were obtained in the adsorption of the rest four sulfonamide species. It is concluded that coal-based activated carbon could removed the sulfonamide antibiotic compounds better than other material-based activated carbons.

Removal Characteristics of Sulfonamide Antibiotic Compounds in Biological Activated Carbon Process (생물활성탄 공정에서의 Sulfonamide계 항생물질 제거특성)

  • Son, Hee-Jong;Jung, Jong-Moon;Roh, Jae-Soon;Yu, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.96-101
    • /
    • 2009
  • In this study, the effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of sulfonamide 5 species in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BACs, increasing EBCT or increasing water temperature increased the sulfonamide 5 species removal in BAC columns. In the coal-based BAC columns, sulfachloropyridazine (SCP), sulfamethazine (SMT) and sulfathiazole (STZ) removal efficiencies were 30~80% and sulfadimethoxine (SDM), sulfamethoxazole (SMX) removal efficiencies were 18~70% for 5~20 min EBCT at $25^{\circ}C$. The kinetic analysis suggested a first-order reaction model for sulfonamide 5 species removal at various water temperatures (5~$25^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for sulfonamide 5 species removal at 5~$25^{\circ}C$. The reaction rate and half-lives of sulfonamide 5 species ranging from 0.0094~0.0718 $min^{-1}$ and 9.7 to 73.7 min various water temperaturs and EBCTs in this study could be used to assist water utilities in designing and operating BAC filters for sulfonamide antibiotic compounds removal.

A Study on the Adsorption of Sulfonamide Antibiotics on Activated Carbon Using Density Functional Theory (DFT 계산을 활용한 Sulfonamide계 항생물질의 활성탄 흡착에 관한 연구)

  • Jo, Jun-Ho;Lim, Dong-Hee;Seo, Gyu Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.457-463
    • /
    • 2013
  • The removal of sulfonamide antibiotics (SAs) by activated carbon was investigated by using granular activated carbon (GAC) tests and density functional theory (DFT) simulations. The GAC absorption tests show the removal efficiency of 68.4~90.7% and 99.0~99.9% in 1 and 24 hours, respectively. In both GAC tests, the removal efficiency of sulfamethazine (SMZ) was the highest followed by those of sulfathiazole (STZ) and sulfamethoxazole (SMTZ): SMZ > STZ > SMTZ. In DFT adsorption simulations, we found that the 4-aminobenzenesulfonamide parts of SMZ and STZ and the 3-methyl-1,2-oxazol-5-amine part of SMTZ are preferentially adsorbed on the edges of graphene model, provided that the adsorbates keep their structures without dissociation upon adsorption process. The adsorption energies of SMZ, STZ, and SMTZ are -4.91, -4.64, and -4.62 eV, respectively. This adsorption strength (SMZ > STZ > STMZ) agrees with the trend of the removal efficiency of SAs by GAC. In addition, dissociative adsorption configurations of SAs are discussed.