• Title/Summary/Keyword: Sulfates

Search Result 121, Processing Time 0.026 seconds

Environmental Assessment for Acid Mine Drainage by Past Coal Mining Activities in the Youngwol, Jungseon and Pyungchang areas, Korea (영월, 정선 및 평창지역 폐 석탄광 산성광산배수의 환경오염 평가)

  • 정명채
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.111-121
    • /
    • 2003
  • The objective of this study is to investigate the physical and chemical properties for environmental assessment of water system affected by acid mine drainage (AMD) from coal mining activities in the Youngwol, Jungseon and Pyungchang areas in Korea. During November 2000 to July 2002, 6 times of water samples were collected season-ally from acid mine drainage and nearby streams at 13 coal mines in the study area. The physical and chemical properties including pH, Eh, TDS, salinity, bicarbonates and DO were measured in the field. Eighteen cations includ-ing Al, Ca, Fe, Mg, Mn and Zn, and 6 anions including nitrates and sulfates were also analyzed by ICP-AES and If, respectively. Acid water from the Jungam coal mine has typical characteristics of AMD with very low pH(3∼4) and high TDS(1,000∼5,000 mg/1). Relatively high concentrations(mg/kg) of heavy meals, especially for Al(380), Fe(80), Mn(44) and Zn(8), were found in water samples from the Jungam coal mine area. Water samples from the Seojin, Sebang and Sungjin coal mines also contained over 50 mg/l of Al, >100 mg/1 of Fe and )10 mg/1 of Mn. In addition to anioins, over 1,000 mg/l of sulfate was found in several water samples. Seasonally, the concentrations of metals and sulfates varied; wet season samples were relatively higher in metals and sulfates than dry season samples. It is needed to establish the proper remediation and environmental monitoring of the AMD continuously.

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.

Study on Determination of Design Factor of Bioreactor for Sulfate Reduction in Mine Drainage (광산배수 내 황산염 저감을 위한 생물반응기의 설계인자 도출 연구)

  • Kim, Kang-Ho;Kang, Chan-Ung;Kim, Sun-Joon;Kim, Tae-Heok;Ji, Won-Hyun;Jang, Hang-Seok;Park, Hyun-Sung
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.527-537
    • /
    • 2018
  • Column tests of a sulfate reducing bacteria (SRB) bioreactor were conducted to determine the design factors for sulfate-rich mine drainage. Various substrates were applied to the bioreactor, including cow manure and its mixture with a mushroom compost, with rice straw and limestone as subsidiary materials. This procedure provided a removal efficiency of up to 82% of the total sulfur with the mixture of cow manure (70%), mushroom compost (10%) and rice straw (20%), and higher efficiencies were observed after 2 days of retention time. In the downflow condition of the flow direction, oxygen supply and re-oxidation of the sulfates occurred, causing a decrease in sulfate removal efficiency. The addition of an inorganic sludge containing heavy metals, which was intended for production of metal-sulfides in the bioreactor, had a negative effect on the long-term operation owing to arsenic release and toxicity to the SRB. The results thus show that a bioreactor using a mixed substrate with cow manure and operating in the downflow direction could reduce sulfates and total dissolved sulfur content; this process confirms the applicability of the SRB bioreactor to sulfate-rich saline drainage.

Effects of Oxidation and Hot Corrosion on the Erosion of Silicon Nitride

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.136-139
    • /
    • 2005
  • The effect of oxidation and hot corrosion on the solid particle erosion was investigated for hot-pressed silicon nitride using as-polished, pre-oxidized and pre-corroded specimens by molten sodium sulfates. Erosion tests were performed at 22, 500 and $900^{\circ}C$ using angular silicon carbide particles of mean diameter $100{\mu}m$. Experimental results show that solid particle erosion rate of silicon nitride increases with increasing temperature for as-polished or pre-oxidized specimens in consistent with the prediction of a theoretical model. Erosion rate of pre-oxidized specimens is lower than that of as-polished specimens at $22^{\circ}C$, but it is higher at $900^{\circ}C$. Lower erosion rate at $22^{\circ}C$ in the pre-oxidized specimens is attributed due to the blunting of surface flaws, and the higher erosion rate at $900^{\circ}C$ is due to brittle lateral cracking. Erosion rate of pre-corroded specimens decreases with increasing temperature. Less erosion at $900^{\circ}C$ than at $22^{\circ}C$ is associated with the liquid corrosion products sealing off pores at $900^{\circ}C$ and the absence of inter-granular crack propagation observed at $22^{\circ}C$.

A Study on the Chemical Components of Acid Deposition (산성 강하물질의 화학적 성분에 관한 연구)

  • 권오영;윤오섭
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.2
    • /
    • pp.39-54
    • /
    • 1994
  • Dry and wet deposition samples were continuously collected by deposit gauge. In Bulkwang area of Seoul and Kanghwa in west coastal area of Korea. In order to evaluate the level of air pollution and its chemical composition, Bulkwang area located in Seoul and Kanghwa in west coastal area were chosen for sampling site. dry deposition concentrations, pH, electric conductivity and water soluble ion concentrations of deposit gauge were analysed. The results of comparison between urban area and coastal area were summarized as follows. Mean concentrations of dry deposition in Bulkwang was 2.807 ton/km$^2$/month (range: 5.171~1.128 ton/km$^2$/month) while that in Kanghwa was 1.990 ton/km$^2$/month (range: 3.358 ~ 1.084 ton/km$^2$/month), which showed a significant difference between two areas. The rainfall during the period from June to September in 1990 recorded 1859.7 mm which was 78.8% of its mean amount in Seoul, and 1846.9 mm which was 81.6% that of Kanghwa. In Bulkwang area, correlation coefficients of deposit chemical composition were 0.95 for SO$_4^{-2}$ and Na$^+$, 0.94 for SO$_4^{-2}$ and NH$_4^+$, 0.93 for CI$^-$ and NH$_4^+$ and 0.85 for Cl$^-$ and Ca$^{2+}$, respectively. Then, the results indicate that sulfates such as $Na_2SO_4$, $(NH_4)_2SO_4$, and CaSO$_4$ were the major chemical state of deposit. In Kanghwa area, it was considered that NaCl, $NH_4NO_3$, NaNO$_3$, and $Ca(NO_3)_2$ were the major chemical state of deposit.

  • PDF

Cloning of Chondroitinase ABC from Bacteroides stercoris HJ-15, a Human Intestinal Anaerobic Bacterium (사람 장내세균군집 유래 Bacteorides stericoris HJ-15의 Chondroitinase ABC의 클로닝)

  • Bang, Seo-Hyeon;Shim, Juwon;Hyun, Yang-Jin;Kim, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.140-144
    • /
    • 2016
  • The gene encoding chondroitinase ABC from a genomic library of Bacteroides stercoris HJ-15, which was isolated from human feces, was cloned. The cloned gene consisted of 3,090 bp and was predicted to encode a 1,029−amino-acid protein. The B. stercoris chondroitinase ABC gene was not homologous to other chondroitinase ABC genes; however, its amino acid sequence showed 71% homology to that of Bacteroides thetaiotaomicron. The gene was cloned in the pET-26b+ expression vector and expressed under the T7 promoter in Escherichia coli BL21(DE3). The purified recombinant chondroitinase ABC degraded chondroitin sulfates A, B, and C.

Sulfates Contents Survey on Dried Seaweeds in Market (시판 건 해초류(미역, 김, 다시마 등) 중 아황산염류 함량 조사)

  • 함희진;김무상;김명희
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.4
    • /
    • pp.340-343
    • /
    • 2000
  • This study was performed to investigate the contents of sulfites in 1,063 dried seaweeds in Seoul Chung-Bu market from March in 1999 to August in 2000. Sulfites of the samples were determined by Zn powder reduction method and bonnier-Williams's modified method. Two samples of 1063 (0.19%) were detected over 30ppm in SO$_2$ contents by bonnier-Williams's modified method. In samples detected over 30ppm, 2 brown algaes were 171.4ppm and 295.7ppm. By Zn powder reduction method, 54 dried seaweeds (54/1063 = 5.08%) were positive reaction (1-30ppm). These were 28 dried lavers, 27 dried brown seaweeds and 2 sea cabbages. According to results, the quality test far the dried seaweeds must be reinforced to supply safety food for the citizens.

  • PDF

Isolation and Characterization of Chondroitin Sulfates from the Byproducts of Marine Organisms

  • Im, A-Rang;Sim, Joon-Soo;Park, You-Mie;Hahn, Bum-Soo;Toida, Toshihiko;Kim, Yeong-Shik
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.872-877
    • /
    • 2009
  • By-products of marine organisms including salmon, skate, flatfish, and yellow goosefish were investigated to search for new source of chondroitin sulfate (CS). Agarose gel electrophoresis with chondroitinase depolymerization showed that purified chondroitin sulfate did not contain any other glycosaminoglycans. 1H-nuclear magnetic resonance (NMR) spectra were acquired to confirm the structure and purity. The average molecular weight ranging from 22 to 64 kDa was determined by high performance size exclusion chromatography. Disaccharide compositions and purities were determined by strong anion exchange-high performance liquid chromatography (SAX-HPLC) after chondroitinase ABC depolymerization. SAX-HPLC data exhibited that the purity was from $81.7{\pm}1.3$ to $114.2{\pm}2.5%$ and the yield was from 1.3 to 12.5%. All analytical results indicate that salmon cartilage, skate cartilage, and yellow goosefish bone could be promising sources of CS to substitute shark cartilage CS in commercial neutraceuticals.

Performance of fouled NF membrane as used for textile dyeing wastewater

  • Abdel-Fatah, Mona A.;Khater, E.M.H.;Hafez, A.I.;Shaaban, A.F.
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.111-121
    • /
    • 2020
  • The fouling of Nanofiltration membrane (NF) was examined using wastewater containing reactive black dye RB5 of 1500 Pt/Co color concentrations with 16890 mg/l TDS collected from El-alamia Company for Dying and Weaving in Egypt. The NF-unit was operated at constant pressure of 10 bars, temperature of 25℃, and flowrate of 420 L/min. SEM, EDX, and FTIR were used for fouling characterization. Using the ROIFA-4 program, the total inorganic fouling load was 1.07 mM/kg present as 49.3% Carbonates, 10.1% Sulfates, 37.2% Silicates, 37.2% Phosphates, and 0.93% Iron oxides. The permeate flux, recovery, salt rejection and mass transfer coefficients of the dye molecules were reduced significantly after fouling. The results clearly demonstrate that the fouling had detrimental effect on membrane performance in dye removal, as indicated by a sharp decrease in permeate flux and dye recovery 68%. The dye mass transfer coefficient was dropped dramatically by 34%, and the salt permeability increased by 14%. In this study, all the properties of the membrane used and the fouling that caused its poor condition are identified. Another study was conducted to regeneration fouled membrane again by chemical methods in another article (Abdel-Fatah et al. 2017).