• Title/Summary/Keyword: Sulfate elimination

Search Result 21, Processing Time 0.015 seconds

Cytotoxicities of Hydrolyzed Crude Laminaran from Eisenia bicyclis on the SNU-1, HeLa and SW Cells (대황으로부터 추출한 crude laminaran 가수분해물의 암 세포독성)

  • Do, Jeong-Ryong;Kim, Dong-Soo;Park, Jong-Hyuk;Kim, Young-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.793-798
    • /
    • 2006
  • We investigated the effects on the cytotoxicity against several cancer cells of the hydrolysis and molecular weight fractionation of crude laminaran from E. bicyclis, a brown seaweed collected from Uleung island in Korea, was extracted with boiling water and then crude laminaran was prepared by ethanol precipitation of extract obtained after elimination of calcium alginate by calcium chloride. Crude laminaran was hydrolyzed by enzyme (Econase CE), acid (0.1 N HCl) and autoclaving ($121^{\circ}C$, 180 min), and the molecular weight fractions by ultrafiltration to generate molecular weight fractions. Total sugar and sulfate contents of hydrolyzed laminaran were 72.3 and 3.5% (enzyme hydrolysate), 68.5 and 3.0% (acid hydrolysate), 70.2 and 3.2% (autoclaved), and monosaccharides of which consisted of glucose (74.7-78.5%), mannose (9.9-11.5%), galactose (8.5-9.6%) and fucose (3.1-4.5%), respectively. When the cytotoxicity of hydrolyzed laminaran on SNU-1, HeLa and SW cells was evaluated by MTT assay, growth-inhibitory activity of the enzyme hydrolysate against cancer cells was higher than that of acid hydrolysate or autoclaved laminaran. Furthermore, the fraction at a molecular weight range of 10 to 50 kDa revealed higher anti-proliferative activities. The $IC_{50}$ values of 10-50 kDa fraction at a molecular weight range of 10 to 50 kDa revealed higher anti-proliferative activities. The $IC_{50}$ values of 10-50 kDa fractions on SNU-1, HeLa and SW cells were 60.4, 58.6 and 53.9 ${\mu}g/mL$ for enzymatic hydrolysate, 75.6, 73.5 and 77.4 ${\mu}g/mL$ for acid hydrolysate, and 61.7, 68.2 and 60.8 ${\mu}g/mL$ for autoclaved, respectively.