• Title/Summary/Keyword: Sugar-related genes

Search Result 36, Processing Time 0.027 seconds

Epistatic Relationships among Genes Related to Endosperm Starch Synthesis in Rice

  • Lee, Joohyun;Koh, Hee-jong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.2
    • /
    • pp.151-156
    • /
    • 2010
  • The mutants of sugary-2 (su-2), floury (flo), shrunken-1 (shr-1), and dull-1 (du-1) were crossed to waxy (wx) to produce $F_2$ seeds. Chi-square analysis on the segregating ratio of the $F_2$ seeds revealed that flo, su-2, and shr-1 were independently transmitted with wx, while wx was epistatic over du-1. The floury and sugary-2 were crossed to Hwasunchalbyeo, a waxy variety, and then the $F_4$ of floury-waxy and sugary-2-waxy seeds were developed, respectively. As the parents phenotypes of sugary-2 and floury, the grains of these two lines showed lower hardness and grain weight than normal grain of Hwacheongbyeo. For alkali digestive value (AVD), the sugary-2-waxy showed lower ADV than Hwacheongbyeo. For the gel consistency of grain flours, the floury was medium like Hwacheongbyeo, while those of the sugary-2, floury-waxy, and sugary-2-waxy were soft like Hwasunchalbyeo. The amylose contents in the grains of the sugary-2 and floury were decreased to ~15% whereas that of Hwacheongbyeo was 19.1%. All the lines showing waxy endosperm (Hwasunchalbyeo, floury-waxy, and sugary-2-waxy) showed less than 4% amylose contents. Interestingly, the free sugar content in the brown rice was increased to 9.27% in the sugary-2-waxy, showing transgressive segregation phenomenon where the free sugar contents in its parents, sugary-2 and Hwasunchalbyeo, were 5.98% and 3.98% respectively. Also, the floury-waxy showed transgressive segregation phenomenon, containing 6.15% of free sugar content in the grains.

Analysis of the Molecular Mechanism of nlp Gene Involved in Transcriptional Regulation in Escherichia coli (대장균의 전사조절 유전자 nlp의 분자기구 해석)

  • 최용락;정수열;정정한;정영기
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.3
    • /
    • pp.229-238
    • /
    • 1993
  • An nlp (Ner like protein) gene from E. coli was previously cloned and sequenced. Here we show that expression of the sugar metabolism related genes, lacZ, malQ and malP, increased 2.5-to 8.3-fold in the presence of a plasmid containing the nlp gene. This suggested that the nlp gene could induce maltose- and lactose-metabolism coordinately with crp*1 in the absence of cAMP. Using the nlp-lacZ fusion gene, it was possible to show the promoter of nlp was active in vivo.

  • PDF

Influence of the plant growth promoting Rhizobium panacihumi on aluminum resistance in Panax ginseng

  • Kang, Jong-Pyo;Huo, Yue;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.442-449
    • /
    • 2021
  • Background: Panax ginseng is an important crop in Asian countries given its pharmaceutical uses. It is usually harvested after 4-6 years of cultivation. However, various abiotic stresses have led to its quality reduction. One of the stress causes is high content of heavy metal in ginseng cultivation area. Plant growth-promoting rhizobacteria (PGPR) can play a role in healthy growth of plants. It has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas, such as Aluminum (Al). Methods: In vitro screening of the plant growth promoting activities of five tested strains were detected. Surface-disinfected 2-year-old ginseng seedlings were dipping in Rhizobium panacihumi DCY116T suspensions for 15 min and cultured in pots for investigating Al resistance of P. ginseng. The harvesting was carried out 10 days after Al treatment. We then examined H2O2, proline, total soluble sugar, and total phenolic contents. We also checked the expressions of related genes (PgCAT, PgAPX, and PgP5CS) of reactive oxygen species scavenging response and pyrroline-5-carboxylate synthetase by reverse transcription polymerase chain reaction (RT-PCR) method. Results: Among five tested strains isolated from ginseng-cultivated soil, R. panacihumi DCY116T was chosen as the potential PGPR candidate for further study. Ginseng seedlings treated with R. panacihumi DCY116T produced higher biomass, proline, total phenolic, total soluble sugar contents, and related gene expressions but decreased H2O2 level than nonbacterized Al-stressed seedlings. Conclusion: R. panacihumi DCY116T can be used as potential PGPR and "plant strengthener" for future cultivation of ginseng or other crops/plants that are grown in regions with heavy metal exposure.

Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars

  • Jayakodi, Murukarthick;Lee, Sang-Choon;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.572-579
    • /
    • 2019
  • Background: Panax ginseng has been used in traditional medicine to strengthen the body and mental well-being of humans for thousands of years. Many elite ginseng cultivars have been developed, and ginseng cultivation has become well established during the last century. However, heat stress poses an important threat to the growth and sustainable production of ginseng. Efforts have been made to study the effects of high temperature on ginseng physiology, but knowledge of the molecular responses to heat stress is still limited. Methods: We sequenced the transcriptomes (RNA-Seq) of two ginseng cultivars, Chunpoong (CP) and Yunpoong (YP), which are sensitive and resistant to heat stress, respectively, after 1- and 3-week heat treatments. Differential gene expression and gene ontology enrichment along with profiled chlorophyll contents were performed. Results: CP is more sensitive to heat stress than YP and exhibited a lower chlorophyll content than YP. Moreover, heat stress reduced the chlorophyll content more rapidly in CP than in YP. A total of 329 heat-responsive genes were identified. Intriguingly, genes encoding chlorophyll a/b-binding proteins, WRKY transcription factors, and fatty acid desaturase were predominantly responsive during heat stress and appeared to regulate photosynthesis. In addition, a genome-wide scan of photosynthetic and sugar metabolic genes revealed reduced transcription levels for ribulose 1,5-bisphosphate carboxylase/oxygenase under heat stress, especially in CP, possibly attributable to elevated levels of soluble sugars. Conclusion: Our comprehensive genomic analysis reveals candidate loci/gene targets for breeding and functional studies related to developing high temperature-tolerant ginseng varieties.

Evaluating the Nutritional Composition of Unripe Citrus and Its Effect on Inhibiting Adipogenesis and Adipocyte Differentiation

  • Sunghee Kim;Eunbi Lee;Juhye Park;Ju-Ock Nam;Soo Rin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1206-1213
    • /
    • 2024
  • Citrus fruits offer a range of health benefits due to their rich nutritional profile, including vitamin C, flavonoids, carotenoids, and fiber. It is known that unripe citrus has higher levels of vitamin C, dietary fiber, polyphenols, and flavonoids compared to mature fruits. In this study, we assessed the nutritional components of unripe citrus peel and pressed juices, as well as their anti-obesity potential through the modulation of adipocyte differentiation and the expression of adipogenesis-related genes, specifically PPARγ and C/EBPα, in 3T3-L1 preadipocytes. Our analysis revealed that unripe citrus peel exhibited elevated levels of fiber and protein compared to pressed juice, with markedly low levels of free sugar, particularly sucrose. The content of hesperidin, a representative flavonoid in citrus fruits, was 3,157.6 mg/kg in unripe citrus peel and 455.5 mg/kg in pressed juice, indicating that it was approximately seven times higher in unripe citrus peel compared to pressed juice. Moreover, we observed that the peel had a dose-dependently inhibitory effect on adipocyte differentiation, which was linked to a significant downregulation of adipogenesis-related gene expression. Thus, our findings suggest that unripe citrus possesses anti-obesity effects by impeding adipogenesis and adipocyte differentiation, with the peel demonstrating a more pronounced effect compared to pressed juice.

Transcription Analysis of Recombinant Trichoderma reesei HJ-48 to Compare the Molecular Basis for Fermentation of Glucose and Xylose

  • Huang, Jun;Lin, Mei;Liang, Shijie;Qin, Qiurong;Liao, Siming;Lu, Bo;Wang, Qingyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1467-1479
    • /
    • 2020
  • Profiling the transcriptome changes involved in xylose metabolism by the fungus Trichoderma reesei allows for the identification of potential targets for ethanol production processing. In the present study, the transcriptome of T. reesei HJ-48 grown on xylose versus glucose was analyzed using next-generation sequencing technology. During xylose fermentation, numerous genes related to central metabolic pathways, including xylose reductase (XR) and xylitol dehydrogenase (XDH), were expressed at higher levels in T. reesei HJ-48. Notably, growth on xylose did not fully repress the genes encoding enzymes of the tricarboxylic acid and respiratory pathways. In addition, increased expression of several sugar transporters was observed during xylose fermentation. This study provides a valuable dataset for further investigation of xylose fermentation and provides a deeper insight into the various genes involved in this process.

Enhancement of Cookie Quality by Microwave Treatment of Allergy Reaction-reduced "Ofree" Wheat Flour (마이크로웨이브 조사를 통한 알러지 저감 밀 오프리의 제과 가공적성 개선)

  • Park, JinHee;Yoon, Young-Mi;Son, Jae-Han;Choi, Chang-Hyun;Kim, Kyeong-Hoon;Kim, Kyeong-Min;Cheong, Young-Keun;Kang, Chon-Sick;Yang, Jinwoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.366-372
    • /
    • 2019
  • The use of flour milled from the Ofree wheat cultivar for baking attenuates allergies because some of the genes related to the allergic reaction have been knocked because some of its genes related to allergic reactions have been knocked down or knocked out through genetic mutation. However, the utilization of this flour is limited because the Ofree grain contains high content of total protein and gluten. Microwave irradiation has been used for changing the protein and gluten characteristics of wheat flour. Thus, this study investigated appropriate conditions of microwave irradiation to enhance the utilization of Ofree flour. As a result, when the flour was microwave-treated for 2 min, although the total protein and gluten contents were not changed, some qualities of the baked sugar-snap cookies, such as spread factor (diameter and thickness) and appearance (crack), were ameliorated. However, excessive heat treatment of the flour for over 3 min led to protein denaturation, which negatively affected the quality of the products. These results indicate that 2 min of microwave irradiation of flour that has high content of total protein and gluten can be used for the enhancement of cookie quality. Therefore, these results are expected to increase the utilization of Ofree wheat flour.

Stable expression and characterization of brazzein, thaumatin and miraculin genes related to sweet protein in transgenic lettuce (감미단백질 관련 브라제인, 타우마틴 및 미라쿨린 유전자를 이용한 형질전환 상추 육성 및 발현분석)

  • Jung, Yeo Jin;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.257-265
    • /
    • 2018
  • Sweetener is one of the additives that makes you feel sweet. Artificial sweeteners and sugar are typical examples, and sweetness proteins with sweetness characteristics have been widely studied. These studies elucidated the transformation lettuce cells with Agrobacterium method for stable production of natural sweet proteins, brazzein, thaumatin, and miraculin. In this paper, we report use of a plant expression system for production of sweet proteins. A synthetic gene encoding sweet proteins was placed under the control of constitutive promoters and transferred to lettuce. High and genetically stable expression of sweetener was confirmed in leaves by RT-PCR and Western blot analysis. Sweet proteins expressed in transgenic lettuce had sweetness-inducing activity. Results demonstrate recombinant sweet proteins correctly processed in transgenic lettuce plants, and that this production system could be a viable alternative to production from the native plant.

Recent progress (2015-2020) in the investigation of the pharmacological effects and mechanisms of ginsenoside Rb1, a main active ingredient in Panax ginseng Meyer

  • Lin, Zuan;Xie, Rongfang;Zhong, Chenhui;Huang, Jianyong;Shi, Peiying;Yao Hong
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.39-53
    • /
    • 2022
  • Ginsenoside Rb1 (Rb1), one of the most important ingredients in Panax ginseng Meyer, has been confirmed to have favorable activities, including reducing antioxidative stress, inhibiting inflammation, regulating cell autophagy and apoptosis, affecting sugar and lipid metabolism, and regulating various cytokines. This study reviewed the recent progress on the pharmacological effects and mechanisms of Rb1 against cardiovascular and nervous system diseases, diabetes, and their complications, especially those related to neurodegenerative diseases, myocardial ischemia, hypoxia injury, and traumatic brain injury. This review retrieved articles from PubMed and Web of Science that were published from 2015 to 2020. The molecular targets or pathways of the effects of Rb1 on these diseases are referring to HMGB1, GLUT4, 11β-HSD1, ERK, Akt, Notch, NF-κB, MAPK, PPAR-γ, TGF-β1/Smad pathway, PI3K/mTOR pathway, Nrf2/HO-1 pathway, Nrf2/ARE pathway, and MAPK/NF-κB pathway. The potential effects of Rb1 and its possible mechanisms against diseases were further predicted via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and disease ontology semantic and enrichment (DOSE) analyses with the reported targets. This study provides insights into the therapeutic effects of Rb1 and its mechanisms against diseases, which is expected to help in promoting the drug development of Rb1 and its clinical applications.

Comparison of Virulence in Xylitol-Sensitive and -Resistant Streptococcus mutans to Different Concentrations of Xylitol (자일리톨 처리 농도에 따른 자일리톨 감성균주와 내성균주의 독력 비교)

  • Im, Sang-Uk;Ahn, Sang-Hun;Song, Keun-Bae
    • Journal of dental hygiene science
    • /
    • v.11 no.5
    • /
    • pp.411-416
    • /
    • 2011
  • Streptococcus mutans (S. mutans) is the major causative bacteria in dental caries. Xylitol is effective anticarious natural sugar substitute by inhibiting the virulence of S. mutans. However, long-term xylitol consumption leads to the emergence of the xylitol-resistant (XR) strains which means xylitol is no more inhibited their growth. We therefore confirmed the general characteristics and the virulence factors of the xylitol-sensitive (XS) and XR S. mutans for different concentrations of xylitol. S. mutans KCTC 3065 was maintained in TYE medium containing 0.4% glucose with 1% xylitol during 30 days at $37^{\circ}C$, 10% $CO_2$ to form XR strain. The strains were transferred to new medium every 24 hr and the same procedures without xylitol were repeated for the formation of XS S. mutans. Both XS and XR were cultured in different concentrations of xylitol (0%, 0.1% and 1%) then, cell growth, acid production and mRNA expression of gtf genes were analyzed. Xylitol reduced the cell growth of XS S. mutans in dose-dependent manner, but not reduced that of XR. Xylitol inhibited acid production of XS in dose-dependent manner, but not inhibited that of XR. Xylitol reduced the gtfB and gtfD mRNA expression of XS S. mutans which genes synthesized soluble and insoluble extracellular polysaccharides, but not reduced that of XR. These results indicate that the virulence of XR S. mutans is different characters of XS strains, which suggests XR strains may have different cariogenicity of XS strains. Further study is needed to explain the mechanism related to extracellular polysaccharide in the XR strains.