• Title/Summary/Keyword: Sudong Stream

Search Result 4, Processing Time 0.02 seconds

Numerical Analysis of Heterotrophic Bacterial Community in the Sudong Stream (수동천에서의 종속영양세균 군집에 대한 수리학적 분석)

  • 최성찬;김상종
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.318-327
    • /
    • 1987
  • Taxonomic composition and diversity were wxamined by statistical analysis for bacterial communities in surface waters of the Sudong Stream, a tributary of North Han River. For total 282 isolates, Flavobacterium, Aeromonas and Enterobacteriaceae was identified by the deterministic schemes as a major group above 50% of total isolates in all sampling sites. Morphological, biochemical and physiological characteristics were numerically analyzed for bacterial isolates from each site and clustered into 15-28 groups. Not all statistically clustered groups were identical to the groups derived from deterministic identification. Especially, consistent relationship was not found in dendrograms for the groups with each a single strain which gas peculiar sugar-degrading activity. At a level of 80% similarity, bacterial diversity (H) was ranged as 2.37-3.14, and it was suggested that the research area was oligotrophic-mesotrophic status. Regional distribution of bacterial community was most heterogeneous at the site where large input of allochthonous materials or bacteria were occurred. And that was the significant factor for the compositions of bacterial communities in the Sudong stream.

  • PDF

Ecological Characteristic between the Re-introduction Population and the Original Population (Jojong Stream, Sudong Stream) of Zacco koreanus in the Bongseonsa Stream, Korea (봉선사천의 참갈겨니(Zacco koreanus) 재도입 개체군과 원개체군(조종천, 수동천) 간 생태학적 특징)

  • Wang, Ju-Hyoun;Choi, Jun-Kil;Lee, Hyuk-Je;Lee, Hwang-Goo
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.6
    • /
    • pp.537-548
    • /
    • 2017
  • The purpose of this study was to investigate the species composition and the aquatic environment of Jojong Stream and Sudong Stream, which were the original habitats of Zacco koreanus population and restored population re-introduced in Bongseonsa Stream. It also compared and analyzed the states of the growth and reproductive ability of Z. koreanus habiting in each of the three streams. The investigation was conducted in June 2016 which was known as the spawning season of Z. koreanus. The results of the physical aquatic environments showed the slight differences in altitude, width and depth of water among three streams, but the bottom structure was found to be quite different in the composition of the boulder, cobble, and pebble among the streams. The result of the physicochemical aquatic environment analysis showed that there were no significant differences in water temperature, pH, DO, BOD, and EC among the three stream. In the fish fauna investigation, 530 individuals of 11 species of 3 families were collected in Bongseonsa Stream, 293 individuals of 12 species of 4 families were collected in Jojong Stream, and 361 individuals of 11 species of 4 families were collected in Sudong Stream. All three streams were dominated by Z. koreanus and Z. platypus. Six Korean endemic species appeared in each of the three streams, showing the high occurrence rate of indigenous species of 50.0% or more. The aggregation index analysis revealed that the mean dominance index ranged from 0.63 (${\pm}0.05$, BS) to 0.72(${\pm}0.01$, JJ), mean diversity index from 1.55 (${\pm}0.06$, JJ) to 1.78 (${\pm}0.11$, BS), mean evenness index from 0.71 (${\pm}0.03$, JJ) to 0.76 (${\pm}0.02$, BS), and mean richness index from 1.61 (${\pm}0.33$, JJ) to 1.73 (${\pm}0.24$, SD). The result indicated that the observed differences between the stream community indices were statistically nonsignificant. The similarity analysis showed that 75.4% similarity was divided into two groups of A and B and that the fish fauna on each analyzed point was similar. The quantitative habitat evaluation index (QHEI) analysis showed that the average value of QHEI was 151.0 (${\pm}46.0$), which means that it was a suboptimal habitat environment. The result of length-weight analysis of Z. koreanus populations showed that the regression coefficient b of the restoration population and the original habitat population were at 3.0 or higher while the condition factor had a positive slope. Moreover, it was found that the slopes of the regression coefficient b and condition factor of the original habitat population were larger than the restored population. The analysis of the length frequency distribution of the Z. koreanus population revealed that all three streams maintained the stable life cycle although it was found that the growth rate of the original habitat population was faster than the restored population in the one-year-old class. The result of the gonadosomatic index (GSI) analysis showed that the GSI median value of the Z. koreanus population in the restored habitat Bongseonsa Stream was higher than the population in the original habitat Jojong Stream and Sudong Stream for both of males and females.

Bacterial Abundance and Heterotrophic Activity in Sudong Stream (수동천에서의 세균의 분포와 생리적 활성도)

  • 최성찬;김상종
    • Korean Journal of Microbiology
    • /
    • v.26 no.4
    • /
    • pp.332-338
    • /
    • 1988
  • The density of heterotrophic bacterial population and heterotrophic activity were measured at monthly interval from March, 1986 to March, 1987 at four sites in the Sudong Stream, a tributary of North Han River. Total bacterial numbers and maximum uptake velocity ($V_{max}$) of glucose ranged as 0.8-$25.2\times 10^{5}$ cells/ml, 0.0006-24.39.$\mu$gC/1/hr, respectively. $V_{max}$ of glucose showed marked seasonal periodicity, with highest values in summer. But density of viable bacteria varied considerably, with no definite seasonal pattern. At the nucontaminated site which located in upstream, heterotrophic bacterial population and activities were relatively low, and small variations were observed downstream flowing except the site where animal originated sewage inputs occurred. And this large input of allochthonous materials and bacteria was an important factor for the stream condition.

  • PDF

Analysis of Sediment Yields at Watershed Scale using Area/Slope-Based Sediment Delivery Ratio in SATEEC (SATEEC 시스템을 이용한 면적/경사도에 의한 유달률 산정 방법에 따른 유사량 분석)

  • Park, Younshik;Kim, Jonggun;Kim, Narnwon;Kim, Ki-sung;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.650-658
    • /
    • 2007
  • The Universal Soil Loss Equation (USLE) has been used in over 100 countries to estimate potential long-term soil erosion from the field. However, the USLE estimated soil erosion cannot be used to estimate the sediment delivered to the stream networks. For an effective erosion control, it is necessary to compute sediment delivery ratio (SDR) for watershed and sediment yield at watershed outlet. Thus, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) was developed to compute the sediment yield at any point in watershed. In this study, the SATEEC was applied to the Sudong watershed, Chuncheon Gangwon to compare the sediment yield using area-based sediment delivery ratio (SDRA) and slope-based sediment delivery ratio (SDRS) at watershed outlet. The sediment yield using the SDRA by Vanoni, SYA and the sediment yield using the SDRS by Willams and Berndt, SYS were compared for the same sized watersheds. The 19 subwatersheds was 2.19 ha in size, the soil loss and sediment yield were estimated for each subwatershed. Average slope of main stream was about 0.86~3.17%. Soil loss and sediment yield using SDRA and SDRS were distinguished depending on topography, especially in steep and flat areas. The SDRA for all subwatersheds was 0.762, however the SDRS were estimated in the range of 0.553~0.999. The difference between SYA and SYS was -79.74~27.45%. Thus site specific slope-based SDR is more effective in sediment yield estimation than area-based SDR. However it is recommended that watershed characteristic need to be considered in estimating yield behaviors.