• Title/Summary/Keyword: Sudden Commencement

Search Result 7, Processing Time 0.026 seconds

PROPAGATION OF SUDDEN IMPULSES IN A DIPOLAR MAGNETOSPHERE

  • LEE DONG-HUN;SUNG SUK-KYUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.101-107
    • /
    • 2003
  • The magnetosphere is often perturbed by impulsive input such as interplanetary shocks and solar wind discontinuities. We study how these initial perturbations are propagating within the magnetosphere over various latitude regions by adopting a three-dimensional numerical dipole model. We examine the wave propagation on a meridional plane in a time-dependent manner and compare the numerical results with multi-satellite and ground observations. The dipole model is used to represent the plasmasphere and magnetosphere with a realistic Alfven speed profile. It is found that the effects of refraction, which result from magnetic field curvature and inhomogeneous Alfven speed, are' found to become important near the plasmapause. Our results show that, when the disturbances are assumed at the subsolar point of the dayside magnetosphere, the travel time becomes smaller to the polar ionosphere compared to the equatorial ionosphere.

Storm Sudden Commencements Without Interplanetary Shocks

  • Park, Wooyeon;Lee, Jeongwoo;Yi, Yu;Ssessanga, Nicholas;Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.181-187
    • /
    • 2015
  • Storm sudden commencements (SSCs) occur due to a rapid compression of the Earth's magnetic field. This is generally believed to be caused by interplanetary (IP) shocks, but with exceptions. In this paper we explore possible causes of SSCs other than IP shocks through a statistical study of geomagnetic storms using SYM-H data provided by the World Data Center for Geomagnetism - Kyoto and by applying a superposed epoch analysis to simultaneous solar wind parameters obtained with the Advanced Composition Explorer (ACE) satellite. We select a total of 274 geomagnetic storms with minimum SYM-H of less than -30nT during 1998-2008 and regard them as SSCs if SYM-H increases by more than 10 nT over 10 minutes. Under this criterion, we found 103 geomagnetic storms with both SSC and IP shocks and 28 storms with SSC not associated with IP shocks. Storms in the former group share the property that the strength of the interplanetary magnetic field (IMF), proton density and proton velocity increase together with SYM-H, implying the action of IP shocks. During the storms in the latter group, only the proton density rises with SYM-H. We find that the density increase is associated with either high speed streams (HSSs) or interplanetary coronal mass ejections (ICMEs), and suggest that HSSs and ICMEs may be alternative contributors to SSCs.

Statistical study of phase reversal locations on the SC-associated preliminary impulse

  • Sung, Suk-Kyung;Kim, Khan-Hyuk;Cho, Kyung-Suk
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.30.3-30.3
    • /
    • 2008
  • In this study, we investigate the magnetic latitude of phase reversal on the sudden commencement (SC)-associated preliminary impulse with 267 SC events using the ground magnetometer data of the IMAGE from 1997 to 2005. During SC event, geomagnetic fields are affected by various currents flowing in the magnetosphere and/or ionosphere. In particular, high-latitude geomagnetic field variations are significantly dominated by the change of SC-associated field aligned current (FAC). Until now, however, there are few studies to examine where the location of the FAC in the ionosphere is and what determines the location of the FAC. The location of the SC-associated FAC can be examined by using magnetometer data obtained from high-latitude stations distributed along the same magnetic meridian. The phase reversal locations are concentrated two regions, ~62 deg (L~4.5) and ~70 deg (L~8.5) in magnetic latitude. If FAC is a result of a mode conversion from fast mode to Alfven mode, then the FAC location could be determine by the duration time of the input energy. When we use the rise time, dT, as the input energy, there is no relationship between dT and the location where the first pulse of SC is reversed. We consider other factors such as local time and solar wind condition.

  • PDF

Statistical analysis of SC-associated geosynchronous magnetic field perturbations

  • Kim, Gwan-Hyeok;Park, Jong-Seon;Lee, Dong-Hun;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.91.2-91.2
    • /
    • 2012
  • Kokubun (1983) reported the local time variation of normalized amplitude of sudden commencement (SC) with a strong day-night asymmetry at geosynchronous orbit with 81 SC events. Further careful inspection of Kokubun's local time distribution reveals that the normalized SC amplitudes in the prenoon sector are larger than those in the postnoon sector. That is, there is a morning-afternoon asymmetry in the normalized SC amplitudes. Until now, however, there are no studies on this SC-associated morning-afternoon asymmetry at geosynchronous orbit. Motivated by this previous observation, we investigate a large data set (422 SC events in total) of geosynchronous SC observations and confirm that the geosynchronous SC amplitudes is larger in the morning sector than in the afternoon sector. This morning-asymmetry is probably caused by the enhancement of partial ring current, which is located in the premidnight sector, due to solar wind dynamic pressure increase. We also examine the latitudinal and seasonal variations of the normalized SC amplitude. We find that the SC-associated geosynchronous magnetic field perturbations are dependent on the magnetic latitude and season of the year. This may be due to the location of the magnetopause and cross-tail currents enhanced during SC interval with respect to geosynchronous spacecraft position.

  • PDF