• Title/Summary/Keyword: Suction-type

Search Result 229, Processing Time 0.028 seconds

Analytical Study on Stall Stagnation Boundaries in Axial-Flow Compressor and Duct Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.56-74
    • /
    • 2013
  • Stall stagnations in the system of axial-flow compressors and ducts occur in transition from deep surge conditions to decayed or converged stall conditions. The present study is concerned with the boundaries between the deep surges and the stagnation stalls on the basis of analytical results by a code on surge transients analysis and simulation. The fundamental acoustical-geometrical stagnation boundaries were made clear from examinations of the results on a variety of duct configurations coupled with a nine-stage compressor and a single stage fan. The boundary was found to be formed by three parts, i.e., B- and A-boundaries, and an intermediate zone. The B-boundary occurs for the suction-duct having a length of about a quarter of the wave-length of the first resonance in the case of very short and fat plenum-type delivery duct. On the other hand, the A-boundary occurs for the long and narrow duct-type delivery flow-path having a length about a fifth of the wavelength and relatively small sectional area in the case of short and narrow suction ducts. In addition to this, the reduced surge-cycle frequencies with respect to the duct lengths are observed to have respective limiting values at the stagnation boundaries. The reduced frequency for the B-boundary is related with a limiting value of the Greitzer's B parameter. The tendency and the characteristic features of the related flow behaviors in the neighborhood of the boundaries were also made clearer.

Optimum Operation of a PVDF-type Hollow Fiber Membrane Bioreactor for Continuous Sewage Treatment

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1315-1322
    • /
    • 2010
  • A membrane bioreactor (MBR) was designed using polyvinylidene fluoride(PVDF)-type hollow fiber membrane modules with a treatment capacity of 10 ton/day. A pilot plant was installed in a sewage treatment plant and was operated with an intermittent aeration method which avoids any concentration gradient of suspended solids (SS) in the MBR. For continuous operation, the pilot plant was first tested with influent (mixed liquor suspended solid:MLSS of 1000-2000 mg/L) of aeration tanks in the sewage treatment plant. The MBR was pre-treated with washing water, 10% ethanol solution, 5% NaOCl solution and finally washing water, one after another. To demonstrate the effect of the MBR on sewage treatment, compared with conventional activated sludge processes, we investigated the relationships among permeate amount (LMH), change in operation conditions, influent MLSS level and sludge production. It was found that the optimum aeration rate and suction pressure were $0.3\;m^3$/min and 30~31 cmHg, respectively. Under stable conditions in aeration, suction pressure, influent flow rate and drainage, the SS removal efficiency was more than 99.99% even when the MLSS loading rate changes. Compared with conventional activated sludge processes, the MBR was more effective in cost reduction by 27% based on permeate amount and by 51.5% on sludge production.

Effects of Open or Closed Suctioning on Lung Dynamics and Hypoxemia in Mechanically Ventilated Patients (기관 내 흡인 유형이 인공호흡기 대상자의 폐기능과 저산소혈증에 미치는 효과)

  • Lee, Eun Young;Kim, Su Hyun
    • Journal of Korean Academy of Nursing
    • /
    • v.44 no.2
    • /
    • pp.149-158
    • /
    • 2014
  • Purpose: This study was conducted to compare effects of open and closed suctioning methods on lung dynamics (dynamic compliance, tidal volume, and airway resistance) and hypoxemia (oxygen saturation and heart rate) in mechanically ventilated patients. Methods: This study was a cross-over repeated design. Participants were 21 adult patients being treated with endotracheal intubation using a pressure-controlled ventilator below Fraction of Inspired Oxygen ($FiO_2$) 60% and PEEP $8cmH_2O$. Data were collected at baseline and 1, 2, 3, 4, 5, and 10 minutes after suctioning. Data were analyzed using two-factor ANOVA with repeated measures on time and suctioning type. Results: Effects of the interaction between suction type and time were significant for oxygen saturation and heart rate but not significant for dynamic compliance, tidal volume, or airway resistance. Prior to performance of suctioning, tidal volume and oxygen saturation were significantly lower, but airway pressure and heart rate were significantly higher using the closed suctioning method as compared with the open suctioning method. Conclusion: For patients on ventilator therapy below $FiO_2$ 60% and PEEP $8cmH_2O$, open suctioning performed after delivery of 100% $FiO_2$ using a mechanical ventilator may not have as much negative impact on lung dynamics and hypoxemia as closed suctioning.

Cyclone Type Filter for Preventing Clogging of High Pressure Coolant Pump (고압 쿨런트 펌프의 막힘 방지를 위한 사이클론 타입 필터)

  • Kim, Jun-Hwan;Kang, Ji-Hun;Kang, Seong-Gi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.599-604
    • /
    • 2015
  • Currently, the coolant system in industrial sites is an efficient process to keep clean cutting oils. However, the damage to a pump occurs due to a chip and debris when inhaled into the pump, and thus problems such as the reduction of both efficiency and lifespan might arise. In this study, a new type of filter was developed in order to primarily prevent the damage from the pump impeller and make it unnecessary to have the replacement and cleaning at the same time. This study found the problem reducing the suction volumetric efficiency and cavitation when inhaled, and conducted a method to solve the problem compared to the result of fluid analysis according to two velocity conditions. As a result, this study achieved the effect of lowering the pressure and meeting the suction flow rate by connecting the four filters.

Effect of degree of compaction & confining stress on instability behavior of unsaturated soil

  • Rasool, Ali Murtaza
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.219-231
    • /
    • 2022
  • Geotechnical materials such as silt, fine sand, or coarse granular soils may be unstable under undrained shearing or during rainfall infiltration starting an unsaturated state. Some researches are available describing the instability of coarse granular soils in drained or undrained conditions. However, there is a need to investigate the instability mechanism of unsaturated silty soil considering the effect of degree of compaction and net confining stress under partially and fully drained conditions. The specimens in the current study are compacted at 65%, 75%, & 85% degree of compaction, confined at pressures of 60, 80 & 120 kPa, and tested in partially and fully drained conditions. The tests have been performed in two steps. In Step-I, the specimens were sheared in constant water content conditions (a type of partially drained test) to the maximum shear stress. In Step-II, shearing was carried in constant suction conditions (a type of fully undrained test) by keeping shear stress constant. At the start of Step-II, PWP was increased in steps to decrease matric suction (which was then kept constant) and start water infiltration. The test results showed that soil instability is affected much by variation in the degree of compaction and confining stresses. It is also observed that loose and medium dense soils are vulnerable to pre-failure instability i.e., instability occurs before reaching the failure state, whereas, instability in dense soils instigates together with the failure i.e., failure line (FL) and instability line (IL) are found to be unique.

Simultaneous nitrification and denitrification by using ejector type microbubble generator in a single reactor

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.251-257
    • /
    • 2020
  • This study was performed to verify the possibility of nitrification and denitrification in a single reactor. In batch type experiment, optimal point of experimental conditions could be found by performing the experiments. When supply location of microbubbles was located at half of width of the aeration tank and operating pressure of 0.5 bar, it was possible for zones in the aeration tank to be separated into anoxic and aerobic by controlling air suction rate according to operating pressure of the generator. To be specific, the concentration of dissolved oxygen (DO) in zone 1 and 2 of the aeration tank could be maintained as less than 0.5 mg/L. Also, in the case of concentration of oxygen in zone 3 and 4, the concentration of DO was increased up to 1.7 mg/L due to effects of microbubbles. In continuous flow type experiment based on the results of batch type experiments, the removal efficiency of nitrogen based on T-N was observed as 39.83% at operating pressure of 0.5 bar and 46.51% at operating pressure of 1 bar so it was able to know that sufficient air suction rate should be required for nitrification. Also, denitrification process could be achieved in a single reactor by using ejector type microbubble generator and organic matter and suspended solid could be removed. Therefore, it was possible to verify that zones could be separated into anoxic and aerobic and nitrification and denitrification process could be performed in a single reactor.

Numerical Analysis on Cavitation of Centrifugal Pump (원심펌프의 캐비테이션에 대한 수치해석)

  • Kim, Myung-Jin;Jin, Hyun-Bae;Son, Chang-Ho;Chung, Wui-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.2
    • /
    • pp.27-34
    • /
    • 2013
  • As the operating range of centrifugal pump is expanded recently, the various suction conditions are demanded. The most important problem in the suction conditions is cavitation. In this study, to analyze the characteristics for such the cavitation, first the validity of the numerical analysis was certified through comparison with the experimental result of performance curve according to flow rate for the industrial centrifugal pump. At this time, the transient numerical analysis for the full type model of the centrifugal pump was performed to get more accurate results. The numerical analysis on the cavitation of centrifugal pump were conducted on the two-phase flow as the same method of one-phased flow.