• Title/Summary/Keyword: Suction Valve

Search Result 74, Processing Time 0.023 seconds

Performance Analysis of a Reciprocating Compressor Using a Real Gas Equation of State (실제기체 상태방정식을 이용한 왕복동압축기의 성능해석)

  • Kim, J.W.;Kim, H.J.;Pak, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.306-315
    • /
    • 1992
  • This paper addresses performance analysis of a reciprocating compressor. A computer simulation model has been developed to predict and estimate the compressor performance. Instead of using ideal gas equations, real gas equations are used in describing the state of gas. The compressor simulation model consists of a cylinder control volume, suction system and discharge system. Conservation laws of mass and energy are applied to the cylinder section only, The suction and discharge system are described by the Helmholtz resonator modeling. Some of input data required for the simulation have been obtained from experiments. These experimentally obtained input data are effective flow area, effective force area and dynamic characteristics of valves. Simulation results of real gas equations have been compared with those of ideal gas equations. It has been found that the simulation with real gas equations yields lower cylinder temperature and heat transfer compared with those of ideal gas equations. Differences in pressure, mass flowrates, valve motions and gas pulsations are found quite small.

  • PDF

Effect of air inflow on the performance of a 50kW-class cross-flow turbine (50kW급 횡류수차 내 공기 유입이 성능에 미치는 영향)

  • Kim, Jun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.418-423
    • /
    • 2014
  • Small hydropower has been considered as a solution to resolve the problem of exhaustion of fossil fuel and industrial pollution. In this study, we developed and tested a Cross-Flow Turbine with two guide vanes to optimize the small hydropower for the site condition with large fluctuation of head and flow rate. Furthermore, in the condition of constant inlet head, CFD analysis was carried out to analyze the effect of air suction and valve position on the performance characteristics. The results showed that the air suction can minimize the hydraulic loss caused by the Recirculation flow in the runner passage and flow impact on main shaft so that it can increase the turbine efficiency and output power.

Study on the Performance Factors of Two Stage Turbo-Charging System and Maximization of the Miller Cycle (2단 과급시스템의 성능 인자 영향과 밀러 효과 극대화에 관한 연구)

  • Beak, Hyun-min;Seo, Jung-hoon;Lee, Won-ju;Lee, Ji-woong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.953-960
    • /
    • 2019
  • The Miller cycle is a diesel engine that has been developed in recent years that it can reduce NOx and improve fuel consumption by reducing the compression ratio through intake valve closing (IVC) time control. The Miller cycle can be divided into the early Miller method of closing the intake valve before the bottom dead center (BDC) and the late Miller method of closing the intake valve after the BDC. At low speeds, the late Miller method is advantageous as it can increase the volumetric efficiency; while at medium and high speeds, the early Miller method is advantageous because of the high internal temperature reduction effect due to the expansion of the intake air during the piston lowering from IVC to BDC. Therefore, in consideration of the ef ects of the early and late Miller methods, it is necessary to adopt the most suitable Miller method for the operating conditions. In this study, a two-stage turbo charge system was applied to four-stroke engines and the process of enhancing the Miller effect through a reduction of the intake and exhaust valve overlap as well as the valve change adjustment mechanism were considered. As a result, the ef ects of fuel consumption and Tmax reduction were confirmed by adopting the Miller cycle with a two-stage supercharge, a reduction of valve overlap, and an increase of suction valve lift.

Computer Simulation of an Automotive Air-Conditioning in a Transient Mode

  • Oh, Sang-Han;Won, Sung-Pil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.220-228
    • /
    • 2002
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as a key design variable. Therefore, transient characteristics of each system component are essential to the preliminary design as well as steady-state performance. The objective of this study is to develop a computer simulation model and ostinato theoretically the transient performance of an automotive air-conditioning system. To do that, the mathematical modelling of each component, such as compressor, condenser, receiver/drier, expansion valve, and evaporator, is presented first of all. The basic balance equations about mass and energy are used in modelling. For detailed calculation, condenser and evaporator are divided into many sub-sections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in this analysis, but the quasisteady state ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. Also it is assumed that there are no heat loss and no pressure drop in discharge, liquid, and suction lines. The developed simulation model is validated by comparing with the laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed well with those of test data in this case.

A Study on the Fluid Interception Valve According to Non Rubbing Top and Bottom operation Shaft (무마찰 상하작동 축에 의한 유체차단 밸브에 관한 연구)

  • Cho, Myung-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.4
    • /
    • pp.27-32
    • /
    • 2005
  • Liquid valve is divided into cylinder and liquid part or composed of a single body structure. It becomes a connected structure to cylinder head after inserting stainless(STS) shaft to Teflon packing. In injecting and intercepting fluid, working efficiency becomes low because of the top and bottom round trip operation the friction between Teflon packing and STS shaft fluid leakage, decline of working environment, and each part replacement. And so target value is unattainable in productivity liquid valve design, quality, and structure change are studied. In this paper, designed to solve the existing problems basically, to prevent friction of Piston by developing diaphragm linked with piston, to satisfy long life, and to provide the prevention of leakage. The objective of the study is also to prevent remains fluid at nozzle tip after dispensing fluid, and bell close with the suction function in piston retreating.

Dynamic Behavior Analysis of Scroll Compressor (스크롤 압축기의 동적 거동 해석)

  • Chun, Seung-woo;Park, Sung-jun
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.49-54
    • /
    • 2012
  • These conventional reciprocating compressor(reciprocating type compressor) or household refrigerators and car air conditioning rotary compressor, rotary compressor, has been used by a reciprocating piston torque variability and the deepening of the vibration problem, the suction valve and discharge valvein this study, as a result of the losses in the current use of the scroll compressor, scroll compressor with the features of low noise, high efficiency, small size, light weight, has increased. fixed Scroll(fixed scroll) scroll compressor with orbiting scroll (rotating scroll) vibration experiments were performed in order to identify the vibration characteristics of the structure of the Analysis was performed using the commercial finite element program(ANSYS) for the sake of comparison, the experimental results using a finite element model of research about the natural vibration characteristics due to a material change.

  • PDF

An Experimental Study on the Performance of an Inverter Heat Pump with a Variation of Frequency and Refrigerant Charging Amount (인버터 열펌프의 주파수 및 냉매봉입량 변화에 따른 시스템 성능특성의 실험적 연구)

  • 최득관;김경천;김주상
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.66-71
    • /
    • 2001
  • In the air-conditioning industry, the refrigerant charging amount is one of the most important parameters affecting the energy efficiency ratio of heat pumps. An experimental study was performed on the characteristics of an inverter driven air-to-air heat pump system with a variation of compressor frequency and charging amount of refrigerant. The frequency was altered from 40Hz to 70Hz and the charging amount was changed from 1.6kg to 2.8kg in tests. The variation of performance was measured with switching of the expansion valve on each frequency and charging amount. All the tests were performed at the Korean Standard and test conditions of the air conditioners. As results, it was found that there existed the charging amount and the level of the suction gas superheat which provided the highest energy efficiency ratio at all the frequency bands.

  • PDF

Reciprocating pump modeling for diagnosis (이상 진단을 위한 왕복동식 펌프 모델링)

  • Lee, Jong Kyeom;Chai, Jang bom;Lee, Jin Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.330-331
    • /
    • 2014
  • A mathematical model is suggested for diagnosis on a reciprocating pump. To the end, kinematic, thermodynamic and fluidic analyses are carried out for a simplified reciprocating pump model. The pressure inside the cylinder is expressed as a function of the rotation angle of a crank axle. The mathematical model consists of one cylinder with suction and discharge valves and an accumulator. The effect of valve leakage on the discharge angle is investigated. The discharge angle difference between normal state and leakage state increases with the leakage extent.

  • PDF

An investigation of LPG fuel supply method for Liquid phase LPG injection system (LP가스연료 액상공급시스템 특성연구)

  • Kim, C.U.;Oh, S.M.;Choi, S.J.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.18-23
    • /
    • 2004
  • An experimental studies of conventional gasoline fuel pump were carried out to obtain fundamental data fur liquid phase LPG injection(LPLi) system. A regenerative type and a roller-vane type of pumps were investigated in various operational condition. The experiments were performed to obtain flow rate of LPG fuel as a function of pressure differences and temperatures. The regenerative pump had too low flow rate at some experimental conditions to use this pump system for LPLi fuel supply system. On the other hand, the roller-vane type pump can be applied to the system only if its check valve is modified. Cavitation might occur in this system which can result in system noise, flow rate variation, and pump durability problem. To solve these problems the system is needed to increase $NPSH_{re}$(required net positive suction head).

  • PDF

The EEV Control of the Multi-type Air-conditioning System by using a Fuzzy Logic Superheat Temperature Setpoint Reset Algorithm (퍼지로직 과열도 재설정 알고리즘을 사용한 멀티형 냉방시스템의 전자팽창밸브 제어)

  • 한도영;이상원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.382-388
    • /
    • 2003
  • Refrigerant flow rates of the multi-type air-conditioning system can be regulated by electronic expansion valves (EEV). The performance of the multi-type air-conditioning system may be improved by lowering the superheat at the compressor suction side. In this study, a superheat temperature setpoint reset algorithm was developed by using fuzzy logics, and a PI algorithm was applied to control the superheat temperature near setpoints. Experimental results showed energy savings and stable operations at a multi-type air-conditioning system. Therefore, the developed setpoint reset algorithm may be effectively used for the EEV superheat temperature control of the multi-type air-conditioning system.