• Title/Summary/Keyword: Suction Valve

Search Result 74, Processing Time 0.027 seconds

An experimental study on the control properties of variable compressors for automotive air-conditioning system (자동차 에어컨용 가변압축기의 제어 특성에 관한 실험적 고찰)

  • Kim, Min Jun;Lee, Geon Ho;Park, Ik Seo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.691-696
    • /
    • 2004
  • Recently, it is required that the automotive air conditioning system must keep the cabin temperature comfortable in spite of engine speed, and Improve the fuel consumption during all the seasons. To satisfy these requirements, the variable displacement swash plate type compressor with control pressure valve is developed. In this study, the effects of two type valves, suction pressure control valve and differential pressure control valve, on the performance of swash plate type compressor has been investigated experimentally.

  • PDF

Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants

  • Lee, Jong Kyeom;Kim, Tae Yun;Kim, Hyun Su;Chai, Jang-Bom;Lee, Jin Woo
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1280-1290
    • /
    • 2016
  • This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

A Study on Flow Characteristics in a PCV valve according to Various Differential Pressures (차압에 따른 PCV 밸브 유동 특성에 관한 연구)

  • Lee, Jong-Hoon;Lee, Yeon-Won;Kim, Jae-Hwan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.230-231
    • /
    • 2005
  • As environmental problems are important, automotive industries are developing various techniques to prevent air pollution. One of these is Positive Crankcase Ventilation (PCV) system. It removes blowby gas which includes about 30% hydrocarbon of total generated quantity. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates differently according to various operating conditions of an automotive engine. As this valve is very important, designers are feeling to design it because of both small size and high velocity. For this reason, we numerically investigated to understand both spool dynamic motion and internal fluid flow characteristics. As the results, spool dynamic characteristics, i.e. displacement, velocity, acting force, increase in direct proportion to the magnitude of differential pressure and indicate periodic oscillating motions. And, the velocity at the orifice region decreases according to the increase of differential pressure because of energy loss which is caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in the front of spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement. We expect that PCV valve designers can easily understand fluid flow inside a PCV valve with our visual information for their help.

  • PDF

Developing a Pressure Control Valve for Air Extraction Cupping Device (부항 장치용 압력 제어 밸브 개발)

  • Lee, Jae Yong;Shim, Dong Wook;An, Soo Kwang;Kim, Eun Seok;Lee, Byung Ryul;Yang, Gi Young
    • Korean Journal of Acupuncture
    • /
    • v.38 no.4
    • /
    • pp.308-316
    • /
    • 2021
  • Objectives : This study aimed to develop a cupping pressure control valve for limiting maximum negative pressure while achieving clinical therapeutic outcomes to minimize side effects induced by excessive negative pressure of air extraction cupping devices. Methods : To determine the clinical necessity and suitability of the cupping pressure control valve, this study was designed to measure the change in pressure with or without the valve using both a manual and an electric suction pump. Results : While the maximum pressure was limited by the pressure control valve, the pressure did not increase above a certain level regardless of the type of manual or electric pump. Conclusions : This study will contribute to the development of a safer and more effective base technology for cupping treatment in oriental medicine.

FLUID STRUCTURE INTERACTION ANALYSIS OF AUTOMOTIVE REFRIGERANT COMPRESSOR (자동차 냉매 압축기의 FSI(Fluid-Structure Interaction) 해석)

  • Son, I.G.;Pae, S.M.;Kim, K.I.;Yoon, Y.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.93-98
    • /
    • 2010
  • One of the most effective key factors to improve performance of automotive reciprocating compressor is the design of suction and discharge reed valves. Reed valves are also the major sources of compressor noise. Valve motion is highly coupled with refrigerant flow. In this study, a process of fluid-structure interaction analysis was developed to predict the cylinder inner flow and the dynamic behavior of valve simultaneously. Interface programs computational structural dynamics code. The full cycle simulations of compressor were performed using FSI analysis was alidated by comparing the simulation results with the experimental results.

  • PDF

Pressure Variation Characteristics at Trapping Region in Oil Hydraulic Piston Pumps (유압 피스톤 펌프의 폐입 구간에서의 압력 변동 특성)

  • Kwag Jae-ryon;Oh Seok-Hyung;Jung Jae-Youn
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.329-334
    • /
    • 2003
  • Design of pre-compression region(trapping region) of the valve plate is an important element to minimize the pressure fluctuation in a cylinder and in discharge process, and pump noise. In this study, we tried to prove what the characteristics of the oil hydraulic pump would be according to the angle of the trapping region. Three kinds of asymmetrical valve plates were used. As a result, we found that by designing the trapping region, the slope of the pressure rise in the cylinder port from low-pressure suction region to high-pressure discharge region is relaxed and the pressure fluctuation width and the discharge pressure pulsation are reduced. Therefore, because the pump gets smooth pressure fluctuation and low fluid Impact, the pump noise is reduce.

  • PDF

Relation between Pressure Variations and Noise in Axial Type Oil Piston Pumps

  • Kim, Jong-Ki;Kim, Hyoung-Eui;Jung, Jae-Youn;Oh, Seok-Hyung;Jung, Seok-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1019-1025
    • /
    • 2004
  • Pressure variation is one of the major sources on noise emission in the axial type oil piston pumps. Therefore, it is necessary that the pressure variation characteristics of the oil hydraulic piston pumps be clarified to reduce the pump noise. Pressure variations in a cylinder at the discharge region and the pump noise were simultaneously measured with discharge pressures and rotational speeds during the pump working. To investigate the effects of the pre-compression and the V-notch in the valve plate, we used the three types of valve plates. In this research, it is clear that the pressure variation characteristics of axial type oil piston pumps is deeply related to the pre-compression and to the V-notch design in valve plate. Therefore, we could reduce the pump noise by using the appropriate pre-compression angle and the notch design that are between the suction port and the discharge port in valve plate.

A Study on Development of Design Program for PCV Valve (PCV 밸브의 설계 프로그램 개발에 관한 연구)

  • Lee, Jong-Hoon;Islam, Md. Tajul;Lee, Yeon-Won;Kim, Young-Duk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.228-232
    • /
    • 2005
  • Automobiles are very important as modern society is developed. Increase of the number of the automobiles cause environmental problem, that is, air pollution. So, many countries are adopting a environmental law. Automobile manufacturing companies have developing methods to prevent air pollution with increase of the efficiency of automotive engines. PCV(Positive Crankcase Ventilation) system which is one of them is made by the closed loop that consists of combustion chamber, crankcase, manifold suction tube and manifold. PCV valve is attached on manifold tube to control the flowrate of blowby gas. PCV valve is an important part in this system but it is difficult to design PCV valve which satisfies the required flowrate of blowby gas. In this study, our purpose is to help a PCV valve designer with the development of a design program. We used 4th order Runge-Kutta method and Bernoulli's equation to analyze the spool dynamic motion. By the comparison between our program and experiment, we think that a PCV designer can use our program in their work place.

  • PDF

An Experimental Study on the Relationship Between Temperature and Pressure Inside the Cup During Cupping Procedures

  • Lee, Ha Lim;An, Soo Kwang;Lee, Jae Yong;Shim, Dong Wook;Lee, Byung Ryul;Yang, Gi Young
    • Journal of Acupuncture Research
    • /
    • v.38 no.1
    • /
    • pp.41-46
    • /
    • 2021
  • Background: Pressure changes related to temperature variation during cupping may lead to dropout. This study aimed to investigate pressure changes related to temperature variations in the cup during the cupping procedure. Methods: Changes in temperature and pressure were measured for 15 minutes after the procedure was performed using the alcohol rub method with glass cups and with the addition of infrared irradiation. Changes in temperature and pressure were also measured for 15 minutes after pumping 3 times using the valve suction method, and with the addition of infrared irradiation. Results: In a comparison between the alcohol rub method with glass cups and with the addition of infrared irradiation, the negative pressure increased over time in the absence of infrared irradiation, whereas it decreased when performed with infrared irradiation p = 0.094. However, in a comparison between pumping 3 times using the valve suction method, and with the addition of infrared irradiation, the negative pressure decreased in both cases, but this was more significant with infrared irradiation p = 0.172. There was a significantly higher temperature in the glass cups (p = 0.004) and the valve cups (p = 0.001) exposed to infrared radiation, compared with no infrared irradiation. Conclusion: The reduction in negative pressure inside the cups exposed to infrared radiation was greater than without infrared irradiation. Temperature increases inside the cup can lead to the risk of dropout.