• Title/Summary/Keyword: Suction Reynolds number

Search Result 66, Processing Time 0.03 seconds

Lift Enhancement and Drag Reduction on an Airfoil at Low Reynolds Number using Blowing and Distributed Suction

  • Chao, Song;Xudong, Yang
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • An active flow control technique using blowing and distributed suction on low Reynolds airfoil is investigated. Simultaneous blowing and distributed suction can recirculate the jet flow mass, and reduce the penalty to propulsion system due to avoiding dumping the jet mass flow. Energy is injected into main flow by blowing on the suction surface, and the low energy boundary flow mass is removed by distributed suction, thus the flow separation can be successfully suppressed. Aerodynamic lift to drag ratio is improved significantly using the flow control technique, and the energy consumption is quite low.

Heat Transfer and Flow Measurements on the Turbine Blade Surface (터빈 블레이드 표면과 선형익렬에서의 열전달 및 유동측정 연구)

  • Lee, Dae Hee;Sim, Jae Kyung;Park, Sung Bong;Lee, Jae Ho;Yoon, Soon Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.567-576
    • /
    • 1999
  • An experimental study has been conducted to investigate the effects of the free stream turbulence intensity and Reynolds number on the heat transfer and flow characteristics In the linear turbine cascade. Profiles of the time-averaged velocity, turbulence intensity, and Reynolds stress were measured in the turbine cascade passage. The static pressure and heat transfer distributions on the blade suction and pressure surfaces were also measured. The experiments were made for the Reynolds number based on the chord length, Rec = $2.2{\times}10^4$ to $1.1{\times}10^5$ and the free stream turbulence intensity, $FSTI_1$ = 0.6% to 9.1 %. The uniform heat flux boundary condition on the blade surface was created using the gold film Intrex and the surface temperature was measured by liquid crystal, while hot wire probes were used for the flow measurements. The results show that the free stream turbulence promotes the boundary layer development and delays the flow separation point on the suction surface. It was found that the boundary layer flows on the suction surface for all Reynolds numbers tested with $FSTI_1$ = 0.6% are laminar. It was also found that the heat transfer coefficient on the blade surface increases as the free stream turbulence intensity increases and the flow separation point moves downstream with an increasing Reynolds number. The results of skin friction coefficients are in good agreement with the heat transfer results in that for $FSTI_1{\geq}2.6%$, the turbulent boundary layer separation occurs.

Wind flow around rectangular obstacles with aspect ratio

  • Lim, Hee-Chang
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.299-312
    • /
    • 2009
  • It has long been studied about the flow around bluff bodies, but the effect of aspect ratio on the sharp-edged bodies in thick turbulent boundary layers is still argued. The author investigates the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$ in mm) placed in a deep turbulent boundary layer. The study is aiming to identify the extant Reynolds number independence of the rectangular bodies and furthermore understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the shape of bodies is changed, responsible for producing extreme suction pressures around the bluff bodies. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of 24,000, 46,000 and 67,000, and large enough that the mean boundary layer flow is effectively Reynolds number independent. The experiment includes wind tunnel work with the velocity and surface pressure measurements. The results show that the generation of the deep turbulent boundary layer in the wind tunnel and the surface pressure around the bodies were all independent of Reynolds number and the longitudinal length, but highly dependent of the transverse width.

Numerical Study About the Effect of the Low Reynolds Number on the Performance in an Axial Compressor (저 레이놀즈 수가 압축기 성능에 미치는 영향에 대한 수치적 연구)

  • Choi, Min-Suk;Chung, Hee-Taeg;Oh, Seong-Hwan;Ko, Han-Young;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.83-91
    • /
    • 2008
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density because it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise was diminished by the separation on the suction surface with full span and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 85% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as the profile loss, the tip leakage loss and the endwall loss using Denton#s loss model, and the effects of the low Reynolds number on the performance were analyzed in detail.

EFFECTS OF THE LOW REYNOLDS NUMBER ON THE PERFORMANCE OF AN AXIAL COMPRESSOR (저 레이놀즈 수가 압축기 성능에 미치는 영향)

  • Choi, Min-Suk;Baek, Je-Hyun;Oh, Seong-Hwan;Ko, Han-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.138-141
    • /
    • 2007
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density became it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise wag diminished by the separation on the suction surface and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 90% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss using Denton's loss model, and effects of the low Reynolds number on the performance were analyzed in detail.

  • PDF

COUETTE FLOW OF TWO IMMISCIBLE LIQUIDS BETWEEN TWO PARALLEL POROUS PLATES IN A ROTATING CHANNEL

  • Rani, Ch. Baby
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.57-68
    • /
    • 2015
  • When a straight channel formed by two parallel porous plates, through which two immiscible liquids occupying different heights are flowing a secondary motion is set up. The motion is caused by moving the upper plate with a uniform velocity about an axis perpendicular to the plates. The solutions are exact solutions. Here we discuss the effect of suction parameter and the position of interface on the flow phenomena in case of Couette flow. The velocity distributions for the primary and secondary flows have been discussed and presented graphically. The skin-friction amplitude at the upper and lower plates has been discussed for various physical parameters.

Numerical Simulation on Dispersion of Fume Micro-Particles by Particle Suction Flows in Laser Surface Machining (입자 석션유동에 따른 레이저 표면가공의 마이크로 흄 오염입자 산포 특성 해석연구)

  • Kyoungjin Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.1-6
    • /
    • 2023
  • In CO2 laser surface machining of plastic films in modern display manufacturing, scattering of fume particles could be a major source of well-recognized film surface contamination. This computational fluid dynamics research investigates the suction air flow patterns over a film surface as well as the dispersion of micron-sized fume particles with low-Reynolds number particle drag model. The numerical results show the recirculatory flow patterns near laser machining point on film surface and also over the surface of vertical suction slot, which may hinder the efficient removal of fume particles from film surface. The dispersion characteristics of fume particles with various particle size have been tested systematically under different levels of suction flow intensity. It is found that suction removal efficiency of fume particles heavily depends on the particle size in highly nonlinear manners and a higher degree of suction does not always results in more efficient particle removal.

  • PDF

Effect of the Suction Performance by the Air-Curtain Blowing around a Suction Duct (흡입관 주위에 형성된 공기차단막이 흡입성능에 미치는 영향)

  • Cho, Chong-Hyun;Kim, Chae-Sil;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.25-32
    • /
    • 2009
  • A study is conducted to improve the suction performance on suction devices which are used to remove polluted air generated by welding or machining process in a spacious working place of industry. Air-curtain is applied around the inlet of suction duct to interrupt the inflow of fresh air from the downstream region where is located opposite to the polluted air source. Two different air-curtain devices, such as a $45^{\circ}$ backward and a fully backward, are adopted. Suction region is experimentally investigated by measuring the suction velocities using a hot-wire anemometer. Contours of the suction velocity are compared with the computed results. The suction condition is selected to 110,000 Reynolds number which is widely used on typical suction devices, and a width of blowing passage for creating the air-curtain is chosen to 9.38% of the suction duct diameter. The experimental results show that the suction performance obtained with the $45^{\circ}$ backward air-curtain was better than that obtained with the fully backward air-curtain. On the suction duct using the $45^{\circ}$ backward air-curtain, the suction region estimated on basis of the 0.4m/sec is improved by 66% at the same input power.

The Effect of Wake-Induced Periodic Unsteadiness on Heat Transfer in the Transitional Boundary Layer Around NACA0012 Airfoil (주기적인 통과후류가 NACA0012 익형 표면에서의 천이 경계층 열전달에 미치는 영향)

  • Jeong, Ha-Seung;Lee, Jun-Sik;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.645-652
    • /
    • 2001
  • Heat transfer data are presented which describe characteristics of the transitional thermal boundary layers on the NACA0012 airfoil with upstream wakes. The wakes are generated periodically by circular cylindrical rods which rotate around the airfoil like a squirrel cage. The unsteady wakes simulate those produced by the upstream rotating blade rows in axial turbomachines. The pressure or suction side of the airfoil is also simulated according to the rotating direction of circular rods. As the Reynolds number and the number of rotating rods increase, the boundary layer transition occurs earlier and the Nusselt number increases. The difference of heat transfer coefficient is less on the pressure side than on the suction side. At a constant Reynolds number, the Nusselt number is larger and smaller, respectively, before and after transition as the Strouhal number increases.

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.