• Title/Summary/Keyword: Suction Flow Rate

Search Result 180, Processing Time 0.028 seconds

Optimization of ejector for swirl flow using CFD (CFD를 이용한 회전 운동을 하는 이젝터의 최적화)

  • Kang, Sang-Hoon;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • This paper investigates the effect of the rotational motion of a driving fluid generated by a rotational motion device at the inlet of a driving nozzle for a gas-liquid ejector, which is the main device used for ozonated ship ballast water treatment. An experimental apparatus was constructed to study the pressure and suction flow rate of each port of the ejector according to the back pressure. Experimental data were acquired for the ejector without rotational motion. Based on the data, a finite element model was then developed. The rotational motion of the driving fluid could improve the suction efficiency of the ejector based on the CFD model. Based on the CFD results, structure optimization was performed for the internal shape of the rotation induction device to increase the suction flow rate of the ejector, which was performed using the kriging technique and a metamodel. The optimized rotation induction device improved the ejector efficiency by about 3% compared to an ejector without rotational motion of the driving fluid.

Study on the Swirling Motion Effect of Ejector Performance (회전 운동이 이젝터 성능에 미치는 영향에 관한 연구)

  • Kang, Sang-Hoon;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.544-549
    • /
    • 2017
  • This paper aims to examine the effect of rotational fluid motion about the efficiency of the gas - liquid ejector, which is a core unit in a ship equilibrium water treatment system. The ejector is a device for injecting ozone into ship equilibrium by the negative pressure generated by exchange of momentum between water and ozone. The existing ejector ejects the driving fluid with a simple form. In this paper, however, a rotation induction device is applied to the driving nozzle so that the driving fluid can be rotated and injected. To investigate the flow characteristics by the rotational movement of the driving fluid, CFD was used. The pressure and flow rate of the driving fluid, the negative pressure and suction flow rate of the suction fluid in the suction part, and the discharge pressure were predicted. On the basis of the results, the efficiency of the ejector using the rotation induction system was 22.25%, which was about 1.7% better than that of the existing ejector. Finally, to verify the feasibility of the CFD, an experiment was conducted on the ejector using the rotation induction device and the results were similar to those of the CFD.

Compressor Performance with Variation of Diffuser Vane Angle (디퓨저 베인각의 변화에 따른 압축기 성능 특성)

  • Shin, Y. H.;Kim, K. H.;Bae, M. H,;Kim, J. H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.36-43
    • /
    • 2000
  • This study presents the centrifugal compressor performance for three different vane stagger angles and wall pressure distribution within vaned diffuser channels, and is also discussed about the stability with respect to the compressor components. As the vane stagger angle decreases, the flow rate for the stall onset decreases, and higher pressure can be obtained at the low flow rate region, however, the effective operation range of the compressor decreases because of the blockage effect of the diffuser vane. Low pressure pocket within the vaned diffuser channel moves from the pressure side of leading edge to the suction side as the flow rate decreases. The compressor system stability mainly depends on that of the diffuser.

  • PDF

Experimental Study on the Performance of Refrigeration System with an Ejector

  • Lee, Won-Hee;Kim, Yoon-Jo;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.201-210
    • /
    • 2002
  • Experimental investigation on the performance of dual-evaporator refrigeration system with an ejector has been carried out. In this study, a hydrofluorocarbon (HFC) refrigerant R134a is chosen as a working fluid. The condenser and two-evaporators are made as concentric double pipes with counter-flow type heat exchangers. Experiments were peformed by changing the inlet and outlet temperatures of secondary fluids entering condenser, high-pressure evaporator and low-pressure evaporator at test conditions keeping a constant compressor speed. When the external conditions (inlet temperatures of secondary fluid entering condenser and one of the evaporators) are fixed, results show that coefficient of performance (COP) increases as the inlet temperature of the other evaporator rises. It is also shown that the COP decreases as the mass flow rate ratio of suction fluid to motive fluid increases. The COP of dual-evapo-rator refrigeration system with an ejector is superior to that of a single-evaporator vapor compression system by 3 to 6%.

Analysis of Abnormal Signals for Induction Motor according to Operating Status of Fire Pumps (소방펌프의 운전상태에 따른 유도전동기의 이상 신호 분석)

  • Ku, Bonhyu;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.20-27
    • /
    • 2022
  • This article aims to develop an algorithm that detects fire pump defects by analyzing the current signals of an induction motor, which are triggered by changes in the flow rate and pressure of multistage volute pumps that are used for fire services. The operational status of the pumps was categorized into three: first, normal operation; second, a defect that is caused by a change in the current value; and third, a defect occasioned by a change in current, pressure, and flow rate. When a fire pump was in normal operation, the motor's operating current was measured between 5.06 A and 6.9 A, the flow rate was estimated at 0-0.27 m3/min, and the pressure ranged from 0 to 0.47 MPa. In the event that a defect was caused by an abnormal current value in the motor, it was attributed to the pump's adherence. Furthermore, if there was no source of water, the defect was considered to have been induced by phase-loss operation, no-load operation, or run-stop operation, with the current value of each scenario being measured at > 52.8 A, < 4.13 A, > 45.15 A, and < 3.8 A, respectively, placing its overall range between 0 and 50 A. The sources of defects were detected based on an analysis of the flow rate, pressure, and current, which represent the following causes: air inflow into the casing, inadequate suction of water, and reverse-phase operation, respectively. Each cause entailed the following values: when air seeped into the casing, the pressure was measured at 0.24 MPa irrespective of changes in the flow rate; when there was inadequate suction of water, the pressure was recorded between 0 and 0.05 MPa despite changes in the flow rate; and when the power line's reverse-phase loss was the cause of the defect, the pressure was measured at 0.33 MPa for a flow rate of 0 L/min, and a higher flow rate decreased the pressure to nearly 0 MPa. The results of this study will enable engineers to develop a pump defect detection algorithm that is based on an analysis of current, and this algorithm will facilitate the execution of a program that will control a fire pump defect detection system.

Exit Flow Measurements of a Centrifugal Pump Impeller

  • Hong, Soon-Sam;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1147-1155
    • /
    • 2002
  • Discharge flows from a centrifugal pump impeller with a specific speed of 150 [rpm, m$^3$/min, m] were experimentally investigated. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow, i.e. without interaction of the impeller and the volute. The unsteady flow was measured at the impeller exit and vaneless diffuser using a hot film probe and a pressure transducer. The flow at impeller exit showed pronounced jet-wake flow patterns. The wake, which was on the suction/hub side at high flow rate, became enlarged pitchwisely on both the hub and the shroud side as the flow rate decreases. The pitchwise non-uniformity of the flow rapidly decreased along the downstream and the non-uniformity almost disappeared at radius ratio of 1.18 for medium flow rate. The mean vaneless diffuser flow was reasonably predicted using a one dimensional analysis when an empirical constant was used to specify the skin friction coefficient. The data can be used for a centrifugal pump impeller design and validation of CFD codes and flow modeling.

A Study on the Numerical Prediction of Cavitation In a Centrifugal Pump (원심펌프 내부의 캐비테이션 수치예측에 관한 연구)

  • Mo, J.O.;Kang, S.J.;Kang, H.K.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.335-338
    • /
    • 2006
  • A Numerical study of the cavitation within a centrifugal pump is carried out using CFD commercial code, FLUENT. The objective of this study is to predict the onset of cavitation within the pump blade and the degradation in the pressure rise due to the generation and transport of vapor. A pump designed for the study is a six bladed, one-circular arc impeller design suggested by A.J. Stepanoff et al. The Steady-state calculations are performed for a wide range of flow rate without the cavitation to investigate the pump performance. The design head and efficiency show a very good agreement with the numerical results at the design flow rate. After the validation with the numerical results, the pump performance and the onset of cavitation within the blade is predicted by changing NPSH at the design flow rate.

  • PDF

An investigation of LPG fuel supply method for Liquid phase LPG injection system (LP가스연료 액상공급시스템 특성연구)

  • Kim, C.U.;Oh, S.M.;Choi, S.J.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.18-23
    • /
    • 2004
  • An experimental studies of conventional gasoline fuel pump were carried out to obtain fundamental data fur liquid phase LPG injection(LPLi) system. A regenerative type and a roller-vane type of pumps were investigated in various operational condition. The experiments were performed to obtain flow rate of LPG fuel as a function of pressure differences and temperatures. The regenerative pump had too low flow rate at some experimental conditions to use this pump system for LPLi fuel supply system. On the other hand, the roller-vane type pump can be applied to the system only if its check valve is modified. Cavitation might occur in this system which can result in system noise, flow rate variation, and pump durability problem. To solve these problems the system is needed to increase $NPSH_{re}$(required net positive suction head).

  • PDF

Dust collection system optimization with air blowing and dust suction module (에어 블로어와 흡입기능을 가진 미세먼지 흡입시스템의 최적화)

  • Jeong, Wootae;Kwon, Soon-Bark;Ko, Sangwon;Park, Duckshin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.290-297
    • /
    • 2016
  • The performance of track cleaning trains to remove accumulated fine particulate matter in subway tunnels depends on the design of the suction system equipped under the train. To increase the efficiency of the suction system under the cleaning vehicle, this paper proposes a novel dust suction module equipped with both air blowing nozzles and a dust suction structure. Computational Fluid Dynamics (CFD) analysis with turbulent flow was conducted to optimize the dust suction system with a particle intake and blowing function. The optimal angle of the air blowing nozzle to maximize the dust removal rate was found to be 6 degrees. The performance of the track cleaning vehicle can be increased by at least 10 percent under an operation speed of 5km/h.

Experimental Investigation on premixed combustion Characteristics with suction & blow fans (송풍기와 폐풍기를 이용한 연소기내의 부분 예혼합화염 연소 특성에 관한 실험적 연구)

  • Kang, B.K.;Oh, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.143-148
    • /
    • 2001
  • We measured emission indices for $NO_x$, CO, temperature and radical characteristics for partially premixied flames formed by suction & blow fans air condition. At sufficiently high levels of partial premixing a double flame structure consisting of a rich premixed inner flame and outer diffusion flame was established similar to that previously observed in premixed flames. $NO_x$, Temperature, CO values were experimented with approximately constant air flow rate and decreasing equivalence ratios. The reduction in $NO_x$ and temperature at suction condition as compared with that for blow condition was approximately 20%, but on the contrary, CO emission was increased. In addition, We measured temperature distributions and found that temperature increased continuously with increasing partial premixing. We also estimated CH, $C_2$ radical intensity. CH and $C_2$ radicals provide evidence that, for the present measurement, CH and $C_2$ radicals intensity was associsated with their premixed component. And we observed stronger $C_2$, CH radicals intensity at suction conditions than blow conditions.

  • PDF