• Title/Summary/Keyword: Suction Flow Rate

Search Result 180, Processing Time 0.03 seconds

An Experimental Study on the Performance Characteristics of a Heat Pump System in the Heating Operation Mode with the Hot Gas Bypass (열펌프의 난방운전시 핫가스 바이패스에 따른 성능 특성에 관한 실험적 연구)

  • Ahn, Jae-Hwan;Joo, Young-Ju;Cho, Il-Yong;Kang, Hoon;Kim, Yong-Chan;Choi, Jong-Min
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.539-543
    • /
    • 2009
  • When the suction pressure of compressor decreases under its limit, the compression ratio is increased causing the malfunctions of compressor. As the method to decrease the compression ratio, hot gas bypass system is usually adopted in heat pump system. In the hot gas bypass system, the discharged gas from the compressor is bypassed into the compressor suction, which causes the increase of suction pressure and the decrease of compression ratio. In this study, the characteristics and performances of the hot gas bypass system in heat pump was investigated experimentally with a variation of the bypass flow rate ratio. With the increase of the bypass rate ratio, the compressor suction pressure was increased, even though the total capacity and COP was decreased. From the analysis of the experimental results, the optimum pressure control algorithm was suggested in this study.

  • PDF

An Experimental Study on a Discharge Pressure, Flow Rate and Foam Discharge Concentration through the Nozzle According to the Foam Suction Nipple Diameter (노즐 구경에 따른 포 수용액의 압력과 유량 및 농도 변화에 관한 실험적 연구)

  • Jang, Kyung-Nam;Lee, Maing-Ro;Park, Bong-Rae;Yun, Ki-Jo;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.84-91
    • /
    • 2015
  • The purpose of this study is to suggest the reasonable model of the caliber in suction nozzle, the pressure of suction nozzle, and the flow rate about foam system of line proportioner type using in the pumpcar. To test this, the experimental study was accomplished on the ground of the standards for the Performance Certification and Product Inspection of Foam Fire-extinguishing Chemical Mixing Machine. Aqueous Film Forming Foam in 3% and pipe type air foam nozzle with line proportioner FE 40 type were used. Test result showed that the pressure of suction nozzle within the limits between 0.25 MPa and 0.35 MPa was appropriate when the caliber in suction nozzle is 4 mm. Also, the pressure of suction nozzle within the limits between 0.45 MPa and 0.60 MPa was appropriate in the higher pressure than 4 mm when the caliber in suction nozzle is 5 mm.

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.

Effect of Nozzle Geometry on the Suction Flow Rate in a Ejector (이젝터의 노즐 형상이 흡입유량에 미치는 영향)

  • Kim, Yoo-Jun;Park, Joung-Woo;Seo, Lee-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.13-17
    • /
    • 2009
  • Ejector is an equipment devised for making use of the low pressure occurring from the fast fluid injection and it is a transportation equipment which can obtain vacuum using the kinetic energy of the fluid. This ejector system is, nowadays, widely used for construction machinery, heavy equipments, the cooling and ventilation of electronic devices and for the various fluid transportation and pumps. In this study, it is attempted to perform a numerical analysis and an experiment to find out the characteristics of fluid quantity, velocity and the pressure distribution of the induction pipe by changing the length and the radius ratio of the nozzle of ejector. From the results, it is investigated that the distributions of velocity and pressure of induction pipe attached are changing with the length and the radius ratio of the nozzle. In addition, it is shown that for the small and large ejector, the efficiency is the maximum when the length of the nozzle arrived to the neck of the ejector, however, if it is installed at below or above the neck the efficiency is rather decreased.

Optimal Design of Serial Connected PZT driven Micro Compressor (직렬 연결된 PZT 구동 마이크로 압축기의 최적 설계)

  • Lee, Il-Hwan;Yoon, Jae-Sung;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.421-426
    • /
    • 2005
  • Optimal design of serial connected PZT driven micro compressor was investigated. Modeling equations were derived using energy equation and mass conservation equation. The results show that mass flow rate was increased as number of connected micro compresses is increased. As pressure difference between suction port and discharge port in compressor group is increased, connected compressors have much more mass flow rate than single compressor. Mass flow rate is also increased as driving frequency is increased. And optimal design scale is suggested for highest efficiency or highest mass flow rate.

  • PDF

Internal Flow of a Two-Bladed Helical Inducer at an Extremely Low Flow Rate

  • Watanabe, Satoshi;Inoue, Naoki;Ishizaka, Koichi;Furukawa, Akinori;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • The attachment of inducer upstream of main impeller is an effective method to improve the suction performance of turbopump. However, various types of cavitation instabilities are known to occur even at the designed flow rate as well as in the partial flow rate region. The cavitation surge occurring at partial flow rates is known to be strongly associated with the inlet back flow. In the present study, in order to understand the detailed structure of internal flow of inducer, we firstly carried out the experimental and numerical studies of non-cavitating flow, focusing on the flow field near the inlet throat section and inside the blade passage of a two bladed inducer at a partial flow rate. The steady flow simulation with cavitation model was also made to investigate the difference of flow field between in the cavitating and no-cavitating conditions.

Effect of air inflow on the performance of a 50kW-class cross-flow turbine (50kW급 횡류수차 내 공기 유입이 성능에 미치는 영향)

  • Kim, Jun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.418-423
    • /
    • 2014
  • Small hydropower has been considered as a solution to resolve the problem of exhaustion of fossil fuel and industrial pollution. In this study, we developed and tested a Cross-Flow Turbine with two guide vanes to optimize the small hydropower for the site condition with large fluctuation of head and flow rate. Furthermore, in the condition of constant inlet head, CFD analysis was carried out to analyze the effect of air suction and valve position on the performance characteristics. The results showed that the air suction can minimize the hydraulic loss caused by the Recirculation flow in the runner passage and flow impact on main shaft so that it can increase the turbine efficiency and output power.

Experimental Investigation on Premixed Combustion Characteristics with Suction & Blow Fans (Suction과 blow fan을 이용한 연소기내의 부분 예혼합화염 연소 특성에 관한 실험적 연구)

  • Kang, Ki-Bal;Kim, Dong-Il;Oh, Sang-Heun
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.15-23
    • /
    • 2002
  • We measured emission indices for $NO_x$, CO, temperature and radical characteristics for partially premixied flames formed by suction & blow fans air condition. At sufficiently high levels of partial premixing a double flame structure consisting of a rich premixed inner flame and outer diffusion flame was established similar to that previously observed in premixed flames. $NO_x$, Temperature. CO concentration were experimented with approximately constant air flow rate and decreasing equivalence ratios. The reduction in $NO_x$, and temperature at suction condition as compared with that for blow condition was approximately 20%, but on the contrary, CO emission was increased. In addition, We measured temperature distributions and found that temperature increased continuously with increasing partial premixing. We also estimated CH, $C_2$ radical intensity. CH and $C_2$ radicals provide evidence that, for the present measurement, CH and $C_2$ radicals intensity was associsated with their premixed component. And we observed stronger $C_2$, CH radicals intensity at suction conditions than blow conditions.

  • PDF

The Effect of Different Inflows on the Unsteady Hydrodynamic Characteristics of a Mixed Flow Pump

  • Yun, Long;Dezhong, Wang;Junlian, Yin;Youlin, Cai;Chao, Feng
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • The problem of non-uniform inflow exists in many practical engineering applications, such as the elbow suction pipe of waterjet pump and, the channel head of steam generator which is directly connect with reactor coolant pump. Generally, pumps are identical designs and are selected based on performance under uniform inflow with the straight pipe, but actually non-uniform suction flow is induced by upstream equipment. In this paper, CFD approach was employed to analyze unsteady hydrodynamic characteristics of reactor coolant pumps with different inflows. The Reynolds-averaged Naiver-Stokes equations with the $k-{\varepsilon}$ turbulence model were solved by the computational fluid dynamics software CFX to conduct the steady and unsteady numerical simulation. The numerical results of the straight pipe and channel head were validated with experimental data for the heads at different flow coefficients. In the nominal flow rate, the head of the pump with the channel head decreases by 1.19% when compared to the straight pipe. The complicated structure of channel head induces the inlet flow non-uniform. The non-uniformity of the inflow induces the difference of vorticity distribution at the outlet of the pump. The variation law of blade to blade velocity at different flow rate and the difference of blade to blade velocity with different inflow are researched. The effects of non-uniform inflow on radial forces are absolutely different from the uniform inflow. For the radial forces at the frequency $f_R$, the corresponding amplitude of channel head are higher than the straight pipe at $1.0{\Phi}_d$ and $1.2{\Phi}_d$ flow rates, and the corresponding amplitude of channel head are lower than the straight pipe at $0.8{\Phi}_d$ flow rates.

Experimental Study on Thicknesss of Heat Storage Zone in Small Solar Pond (소형실험태양(小型實驗太陽)연못에서 열저장층(熱貯藏層)의 두께에 관(關)한 실험적(實驗的) 연구(硏究))

  • Pak, Ee-Tong;Seo, Ji-Weon
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.22-29
    • /
    • 1987
  • This paper dealed with thickness variation of bottom heat sotrage zone due to salinity and flow rate of extration hot brine in small test solar pond (0.5m wide, 0.5m high, 1.0m long). Testing apparatus and situation were follows: 7.1 cm of height of suction diffuser and 1.8cm of height of discharge diffuser above the test pond respectively, 0.3cm of slot size of suction diffuser, 1.0cm of slot size of discharge diffuser, 47cm of length of the slot; heating of hot water ($75^{\circ}C$) through separated hot water tank, discharge of the brine into storage zone through discharge diffuser, the extration of the brine through suction diffuser, circulation of the extracted brine through a heat exchanger (cooler). Following results were obtained through the experiments. 1. In small test solar pond, the typical three zone which showed up in real solar pond were established. 2. Richardson Number was used more effectively to confirm hydrodynamic stability of the stratified flow. 3. The thickness of non convective layer had a great effect on the heat storage of the bottom convective layer, then the temperature of bottom convective layer had a relation to that of upper convective layer. 4. Optimum operating condition in the test pond was on 10%-15% of salt concentration and $0.05m^3/hr$ of flow rate of extraction hot brine. 5. Following thickness of 3 zones were available to obtain under optimum operation condition: o bottom storage zone: $30%{\pm}10%$ of total pond depth o non-convective zone: $40%{\pm}10%$ of total pond depth o Upper surface zone: $20%{\pm}10%$ of total pond depth.

  • PDF