• Title/Summary/Keyword: Successive interference cancellation

Search Result 137, Processing Time 0.035 seconds

Performance Analysis of the Hybrid Multiuser Detection Algorithms in Rayleigh Fading Channel (Rayleigh 페이딩 채널에서 하이브리드 다중사용자 검파 알고리즘의 성능분석)

  • 강환민;김성수;김신원;조성호
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.963-966
    • /
    • 2000
  • 현재 상용화된 CDMA (code division multiple access)방식은 사용자가 증가함에 따라 다중 사용자 간섭(multiuser interference)에 의해 통화품질 향상 및 가입자 수용 용량 증대에 한계를 가지고 있다. 이러한 문제를 극복하기 위해 다양한 다중 사용자 간섭 제거 알고리즘이 제안되었다 〔1-5〕. 본 논문에서는 여러 형태의 알고리즘들 가운데, 역상관 successive interference cancellation(SIC) , zero-forcing decision-feedback(ZF-DF) 검파기와 parallel interference cancellation(PIC) 검파기를 하이브리드 형태로 구성하는 방법을 제안하였고. 그에 따른 성능 분석 및 Rayleigh 페이딩 환경에서 컴퓨터 시뮬레이션을 통한 성능비교를 하였다. 컴퓨터 모의시험결과, 본 논문에서 제안한 3가지 하이브리드 검파기 모두 기존 검파기에 비하여 우수한 성능을 보였다.

  • PDF

a Study on the Hybrid Interference Canceller for MAI Cancellation (다중접속간섭 제거를 위한 혼합형 간섭제거기에 관한 연구)

  • Kim, Jae-Hong;Park, Yong-Wan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.4
    • /
    • pp.9-16
    • /
    • 2000
  • This paper shows the performance of a multiuser detection DS-CDMA receiver based on of the hybrid scheme of parallel interference cancellation (PIC) and successive interference cancellation (SIC). The proposed hybrid interference cancellation is presented and is compared with existing PIC, SIC and Hybrid It of other type schemes. The performance criteria used for comparison are complexity, delay and average bit error rate (BER) performance obtained by simulation in Rayleigh-fading channel (Jake's model) with additive white Gaussian noise (AWGN). In the proposed hybrid IC, the BER performance approximates the one of SIC and the delay is half of the SIC. And the number of cancellation of the hybrid It is reduced about a fourth.

  • PDF

Iterative Detection and ICI Cancellation for MISO-mode DVB-T2 System with Dual Carrier Frequency Offsets

  • Jeon, Eun-Sung;Seo, Jeong-Wook;Yang, Jang-Hoon;Paik, Jong-Ho;Kim, Dong-Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.702-721
    • /
    • 2012
  • In the DVB-T2 system with a multiple-input single-output (MISO) transmission mode, Alamouti coded orthogonal frequency division multiplexing (OFDM) signals are transmitted simultaneously from two spatially separated transmitters in a single frequency network (SFN). In such systems, each transmit-receive link may have a distinct carrier frequency offset (CFO) due to the Doppler shift and/or frequency mismatch between the local oscillators. Thus, the received signal experiences dual CFOs. This not only causes dual phase errors in desired data but also introduces inter-carrier interference (ICI), which cannot be removed completely by simply performing a CFO compensation. To overcome this problem, this paper proposes an iterative detection with dual phase errors compensation technique. In addition, we propose a successive-iterative ICI cancellation technique. This technique successively eliminates ICI in the initial iteration by exploiting pre-detected data pairs. Then, in subsequent iterations, it performs a fine interference cancellation using a priori information, iteratively fed back from the channel decoder. In contrast to previous works, the proposed techniques do not require estimates of dual CFOs. Their performances are evaluated via a full DVB-T2 simulator. Simulation results show that the DVB-T2 receiver equipped with the proposed dual phase errors compensation and the successive-iterative ICI cancellation techniques achieves almost the same performance as ideal dual CFOs-free systems, even for large dual CFOs.

On Power Splitting under User-Fairness for Correlated Superposition Coding NOMA in 5G System

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.68-75
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) has gained the significant attention in the fifth generation (5G) mobile communication, which enables the advanced smart convergence of the artificial intelligence (AI), the internet of things (IoT), and many of the state-of-the-art technologies. Recently, correlated superposition coding (SC) has been proposed in NOMA, to achieve the near-perfect successive interference cancellation (SIC) bit-error rate (BER) performance for the stronger channel users, and to mitigate the severe BER performance degradation for the weaker channel users. In the correlated SC NOMA scheme, the stronger channel user BER performance is even better than the perfect SIC BER performance, for some range of the power allocation factor. However, such excessively good BER performance is not good for the user-fairness, i.e., the more power to the weaker channel user and the less power to the stronger channel user, because the excessively good BER performance of the stronger channel user results in the worse BER performance of the weaker channel user. Therefore, in this paper, we propose the power splitting to establish the user-fairness between both users. First, we derive a closed-form expression for the power splitting factor. Then it is shown that in terms of BER performance, the user-fairness is established between the two users. In result, the power splitting scheme could be considered in correlated SC NOMA for the user-fairness.

MIMO Detection Algorithms in Binary PAM DS UWB Communication (이진 PAM DS UWB 통신에서 MIMO 검출 기법)

  • Kang, Yun-jeong;Kim, Gil-nam;Kim, Sang-choon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.447-450
    • /
    • 2009
  • In this paper, binary pulse-antipodal modulation (2PAM) direct-sequence (DS) ultra-wideband (UWB) system is applied to multiple input multiple output (MIMO) system using vertical bell lab layered space-time (V-BLAST) structure to achieve high-data-rate communications over indoor wireless channels. The relationship between antenna dimension and BER performance of 2PAM DS UWB MIMO system is discussed. In the receiver of UWB-MIMO system, various MIMO detection algorithms such as zero-forcing (ZF), ZF-ordered successive interference cancellation (OSIC), minimum-mean-square-error (MMSE), MMSE-OSIC and maximum likelihood (ML) are comparatively studied.

  • PDF

On Inflated Achievable Sum Rate of 3-User Low-Correlated SC NOMA

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • In the Internet of Thing (IoT) framework, massive machine-type communications (MMTC) have required large spectral efficiency. For this, non-orthogonal multiple access (NOMA) has emerged as an efficient solution. Recently, a non-successive interference cancellation (SIC) NOMA scheme has been implemented without loss. This lossless NOMA without SIC is achieved via correlated superposition coding (SC), in contrast to conventional independent SC. However, conventional minimum high-correlated SC for only 2-user NOMA schemes was investigated in the lossless 2-user non-SIC NOMA implementation. Thus, this paper investigates a 3-user low-correlated SC scheme, especially for an inflated achievable sum rate, with a design of 3-user low-correlated SC. First, we design the 3-user low-correlated SC scheme by taking the minimum sum rate between 3-user SIC NOMA and 3-user non-SIC NOMA, both with correlated SC. Then, simulations demonstrate that the low correlation in the direction of the first user's power allocation inflates the sum rate in the same direction, compared to that of conventional minimum high-correlated SC NOMA, and such inflation due to low correlation is also observed similarly, in the direction of the second user's power allocation. Moreover, we also show that the two low correlations of the first and second users inflates doubly in the both directions of the first and second users' power allocations. As a result, the proposed 3-user low-correlated SC could be considered as a promising scheme, with the inflated sum rate in the future fifth-generation (5G) NOMA networks.

Near-BER lossless Asymmetric 2PAM non-SIC NOMA with Low-Complexity and Low-Latency under User-Fairness

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.43-51
    • /
    • 2021
  • As the number of mobile devices has been increasing tremendously, system capacity should be enlarged in future next generation communication, such as the fifth-generation (5G) and beyond 5G (B5G) mobile networks. For such future networks, non-orthogonal multiple access (NOMA) has been considered as promising multiple access technology. In this paper, to reduce both latency and complexity in existing NOMA, we propose non-successive interference cancellation (SIC) NOMA with asymmetric binary pulse amplitude modulation (2PAM), nearly without bit-error rate (BER) loss. First, we derive the closed form of BER expressions for non-SIC NOMA with asymmetric 2PAM, especially under Rayleigh fading channels. Then, it is shown that the BER performance of the stronger channel user who is supposed to perform SIC in conventional NOMA can be nearly achieved by the proposed non-SIC NOMA with asymmetric 2PAM, especially without SIC. Furthermore, we also show that the BER performance of the weaker channel user in conventional NOMA can be more closely achieved by the proposed non-SIC NOMA with asymmetric 2PAM. These BERs are shown to be achieved over the part of the power allocation range, which is consistent with the NOMA principle of user fairness. As a result, the non-SIC NOMA scheme with asymmetric 2PAM could be considered as a promising NOMA scheme toward next generation communication.

On Improved Outage Probability of Correlated Superposition Coding/non-SIC NOMA (상관 관계 중첩 코딩/non-SIC 비직교 다중접속의 향상된 Outage 확률에 관해)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.611-616
    • /
    • 2021
  • This paper investigates the improved outage probability of correlated superposition coding(CSC)/non-successive interference cancellation(SIC) non-orthogonal multiple access(NOMA) scheme. For this, first, we calculate the outage probability of the conventional independent superposition coding(ISC)/SIC NOMA scheme. Then, simulations demonstrate that the outage probability of CSC/non-SIC NOMA improves greatly, with respect to that of conventional ISC/SIC NOMA. As a result, CSC/non-SIC NOMA schemes could be a promising technique in 5G networks, especially with such improved outage probability.

Pseudo Complex Correlation Coefficient: with Application to Correlated Information Sources for NOMA in 5G systems

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.42-51
    • /
    • 2020
  • In this paper, the authors propose the pseudo complex correlation coefficient (PCCC) of the two complex random variables (RV), because the four real correlation coefficients (RCC) of the corresponding four real RVs cannot be obtained only from the complex correlation coefficient (CCC) of given two complex RV. Such observation is motivated by the general statement; "The complex jointly-Gaussian random M-vector cannot be completely described by the complex covariance matrix, even though the real Gaussian random 2M-vector can be completely descried by the real covariance matrix. Therefore, in order to describe completely the complex jointly-Gaussian random M-vector, we need an additional matrix, namely the complex pseudo-covariance matrix, along with the complex covariance matrix." Then, we apply PCCC to correlated information sources (CIS) for non-orthogonal multiple access (NOMA) in 5G system, and investigate impact of the proposed PCCC on the achievable data rate of the stronger channel user in the conventional successive interference cancellation (SIC) NOMA with CIS. It is shown that for the given same CCC, the achievable data rates with the different PCCC are different, because the corresponding RCC are different. We also show that as the absolute value of the same CCC increases, the impact of the different PCCC becomes more significant.