• Title/Summary/Keyword: Successive interference cancellation

Search Result 137, Processing Time 0.026 seconds

Scheduling Algorithm for Multiuser MIMO-OFDM System (MMSE-SIC 기반 상향링크 다중 사용자 MIMO-OFDM 시스템에서 공정한 스케줄링 기법)

  • Lee, Pan-Hyung;Lee, Jae-Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.91-94
    • /
    • 2008
  • 본 논문에서는 준 정적(quasi-static) 레일레이 페이딩(Rayleigh fading) 채널에서 상향링크 다중 사용자 MIMO-OFDM 시스템을 위한 최소평균제곱오차-순차간섭제거(MMSE-SIC: Minimum mean square error-successive interference cancellation) 수신기에 대해 연구한다. 송신 안테나가 하나인 사용자와 수신 안테나가 다수인 기지국에서 MMSE-SIC 수신기를 기반으로 신호를 검출하는 시스템에서는 하나의 부대역 내에서 동시에 전송 가능한 사용자의 수가 기지국에서의 수신안테나 수보다 작아야 하는 제한 조건을 가지고 있다. 따라서 사용자간 공정성을 보장하고 시스템의 효율성을 높이기 위해 낮은 복잡도를 가지는 비례 공정(Proportional fair) 스케줄링 알고리즘을 제안한다. 제안된 비례 공정 스케줄링 알고리즘에서는 부대역 내에서 다중 사용자 채널 행렬을 기반으로 동시에 전송하는 사용자들의 집합을 찾는다. 평균 채널 이득이 사용자마다 다른 환경에서의 모의실험을 통해 제안된 비례 공정 스케줄링 기법의 성능을 알아본다. 제안된 비례 공정 스케줄링 기법은 기존의 공정성을 기반으로 하는 스케줄링 알고리즘보다 더 큰 일반 비례 공정(General proportional fair) 기준과 더 높은 셀 수율(Cell throughput)을 가지는 것을 보이고 있다.

  • PDF

On Negative Correlation Bit-to-Symbol(: B2S) Mapping for NOMA with Correlated Information Sources in 5G Systems (5G 시스템에서 상관 정보원의 비직교 다중접속을 위한 음수의 상관관계 계수 B2S 사상)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.881-888
    • /
    • 2020
  • In this paper, in order to improve the degraded BER performance of the stronger channel user in non-orthogonal multiple access(: NOMA) with interactive mobile users, we propose the negative correlation bit-to-symbol(: B2S) mapping. First, the closed-form expression for the BER of the negative correlation B2S mapping receiver is derived, and then it is shown that the BER of the negative correlation B2S mapping receiver is improved, compared with those of the ideal perfect successive interference cancellation(: SIC) receiver and positive correlation receiver. Additionally, based on the analytical expression, signal-to-noise(: SNR) gain is calculated, and the superiority of the negative correlation B2S mapping receiver is validated.

On Additive Signal Dependent Gaussian Noise Channel Capacity for NOMA in 5G Mobile Communication

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • The fifth generation (5G) mobile communication has been commercialized and the 5G applications, such as the artificial intelligence (AI) and the internet of things (IoT), are deployed all over the world. The 5G new radio (NR) wireless networks are characterized by 100 times more traffic, 1000 times higher system capacity, and 1 ms latency. One of the promising 5G technologies is non-orthogonal multiple access (NOMA). In order for the NOMA performance to be improved, sometimes the additive signal-dependent Gaussian noise (ASDGN) channel model is required. However, the channel capacity calculation of such channels is so difficult, that only lower and upper bounds on the capacity of ASDGN channels have been presented. Such difficulties are due to the specific constraints on the dependency. Herein, we provide the capacity of ASDGN channels, by removing the constraints except the dependency. Then we obtain the ASDGN channel capacity, not lower and upper bounds, so that the clear impact of ASDGN can be clarified, compared to additive white Gaussian noise (AWGN). It is shown that the ASDGN channel capacity is greater than the AWGN channel capacity, for the high signal-to-noise ratio (SNR). We also apply the analytical results to the NOMA scheme to verify the superiority of ASDGN channels.

A Novel Recursive Algorithm for Efficient ZF-OSIC Detection in a V-BLAST System

  • Yin, Zuo-Liang;Mao, Xing-Peng;Zhang, Qin-Yu;Zhang, Nai-Tong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2326-2339
    • /
    • 2011
  • To reduce the implementation complexity of the Vertical Bell Labs layered space-time (V-BLAST) systems with respect to the zero-forcing (ZF) criterion, a computationally efficient recursive algorithm is proposed. A fast implementation of the proposed algorithm is developed and its complexity is analyzed in detail. The proposed algorithm matches the ZF-OSIC detection well, and its three significant advantages can be demonstrated by analyses and simulations. Firstly, its speedups over the conventional ZF-OSIC with norm-based ordering, the original fast recursive algorithm (FRA) and the fastest known algorithm (FKA) in the number of flops are 1.58, 2.33 and 1.22, respectively. Secondly, a much simpler implementation than FRA and FKA can be expected. Finally, the storage requirements are lower than those of FRA and FKA. These advantages make the proposed algorithm more efficient and practical.

Performance Analysis of NOMA-based Relaying Networks with Transceiver Hardware Impairments

  • Deng, Chao;Zhao, Xiaoya;Zhang, Di;Li, Xingwang;Li, Jingjing;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4295-4316
    • /
    • 2018
  • In this paper, the performance of non-orthogonal multiple access (NOMA) dual-hop (DH) amplify-and-forward (AF) relaying networks is investigated, where Nakagami-m fading channel is considered. In order to cover more details, in our analysis, the transceiver hardware impairments at source, relay and destination nodes are comprehensively considered. To characterize the effects of hardware impairments brought in NOMA DH AF relaying networks, the analytical closed-form expressions for the exact outage probability and approximate ergodic sum rate are derived. In addition, the asymptotic analysis of the outage probability and ergodic sum rate at high signal-to-noise ratio (SNR) regime are carried out in order to further reveal the insights of the parameters for hardware impairments on the network performance. Simulation results indicate the performance of asymptotic ergodic sum rate are limited by levels of distortion noise.

NOMA Transceiver Design for Highway Transportation in Mobile Hotspot Networks

  • Hui, Bing;Kim, Junhyeong;Choi, Sung-Woo;Chung, Heesang;Kim, Ilgyu;Lee, Hoon
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1042-1051
    • /
    • 2016
  • The mobile hotspot network (MHN), which is capable of providing a data rate of gigabits per second at high speed, is considered a potential use case of the future enhanced mobile broadband for 5G. Because a unidirectional network deployment has been considered for an MHN, non-orthogonal multiple access (NOMA) can be employed to improve the system performance. For a practical implementation of NOMA under an MHN highway scenario where multiple pieces of MHN terminal equipment are served through the same beam simultaneously, a NOMA transceiver is proposed in this paper. For the NOMA transmitter, Gray-coded QAM constellation mapping is extended to arbitrary modulation order q. For the NOMA receiver, successive interference cancellation (SIC) is no longer necessary, and instead, a parallel demodulation is proposed. The numerical and simulation results suggest that the proposed NOMA transceiver outperforms the conventional NOMA SIC receiver and can be flexibly used for an MHN highway scenario.

8 Antenna Polar Switching Up-Down Relay Networks

  • Li, Jun;Lee, Moon-Ho;Yan, Yier;Peng, Bu Shi;Hwang, Gun-Joon
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.239-249
    • /
    • 2011
  • In this paper, we propose a reliable $8{\times}8$ up-down switching polar relay code based on 3GPP LTE standard, motivated by 3GPP LTE down link, which is 30 bps/Hz for $8{\times}8$ MIMO antennas, and by Arikan's channel polarization for the frequency selective fading (FSF) channels with the generator matrix $Q_8$. In this scheme, a polar encoder and OFDM modulator are implemented sequentially at both the source node and relay nodes, the time reversion and complex conjugation operations are separately implemented at each relay node, and the successive interference cancellation (SIC) decoder, together with the cyclic prefix (CP) removal, is performed at the destination node. Use of the scheme shows that decoding at the relay without any delay is not required, which results in a lower complexity. The numerical result shows that the system coded by polar codes has better performance than currently used designs.

Generalized Quadrature Spatial Modulation Scheme Using Antenna Grouping

  • Castillo-Soria, Francisco Ruben;Cortez-Gonzalez, Joaquin;Ramirez-Gutierrez, Raymundo;Maciel-Barboza, Fermin Marcelo;Soriano-Equigua, Leonel
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.707-717
    • /
    • 2017
  • This paper presents a novel generalized quadrature spatial modulation (GQSM) transmission scheme using antenna grouping. The proposed GQSM scheme combines QSM and conventional spatial multiplexing (SMux) techniques in order to improve the spectral efficiency (SE) of the system. Analytical and simulation results show that the proposed transmission scheme has minimal losses in terms of the average bit error probability along with the advantage of an increased SE compared with previous SM and QSM schemes. For the case studies, this advantage represents a reduction of up to 81% in terms of the number of required transmit antennas compared with QSM. In addition, a detection architecture based on the ordered successive interference cancellation scheme and the QR decomposition is presented. The proposed QRD-M adaptive algorithm showed a near-maximum-likelihood performance with a complexity reduction of approximately 90%.

An Efficient Soft-Output MIMO Detection Method Based on a Multiple-Channel-Ordering Technique

  • Im, Tae-Ho;Park, In-Soo;Yoo, Hyun-Jong;Yu, Sung-Wook;Cho, Yong-Soo
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.661-669
    • /
    • 2011
  • In this paper, we propose an efficient soft-output signal detection method for spatially multiplexed multiple-input multiple-output (MIMO) systems. The proposed method is based on the ordered successive interference cancellation (OSIC) algorithm, but it significantly improves the performance of the original OSIC algorithm by solving the error propagation problem. The proposed method combines this enhanced OSIC algorithm with a multiple-channel-ordering technique in a very efficient way. As a result, the log likelihood ratio values can be computed by using a very small set of candidate symbol vectors. The proposed method has been synthesized with a 0.13-${\mu}m$ CMOS technology for a $4{\times}4$ 16-QAM MIMO system. The simulation and implementation results show that the proposed detector provides a very good solution in terms of performance and hardware complexity.

Deep Learning-Based Modulation Detection for NOMA Systems

  • Xie, Wenwu;Xiao, Jian;Yang, Jinxia;Wang, Ji;Peng, Xin;Yu, Chao;Zhu, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.658-672
    • /
    • 2021
  • Since the signal with strong power need be demodulated first for successive interference cancellation (SIC) receiver in non-orthogonal multiple access (NOMA) systems, the base station (BS) need inform the near user terminal (UT), which has allocated higher power, of the far UT's modulation mode. To avoid unnecessary signaling overhead of control channel, a blind detection algorithm of NOMA signal modulation mode is designed in this paper. Taking the joint constellation density diagrams of NOMA signal as the detection features, the deep residual network is built for classification, so as to detect the modulation mode of NOMA signal. In view of the fact that the joint constellation diagrams are easily polluted by high intensity noise and lose their real distribution pattern, the wavelet denoising method is adopted to improve the quality of constellations. The simulation results represent that the proposed algorithm can achieve satisfactory detection accuracy in NOMA systems. In addition, the factors affecting the recognition performance are also verified and analyzed.