• Title/Summary/Keyword: Successive Approximation Register(SAR) ADC

Search Result 32, Processing Time 0.023 seconds

A 12 bit 750 kS/s 0.13 mW Dual-sampling SAR ADC

  • Abbasizadeh, Hamed;Lee, Dong-Soo;Yoo, Sang-Sun;Kim, Joon-Tae;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.760-770
    • /
    • 2016
  • A 12-bit 750 kS/s Dual-Sampling Successive Approximation Register Analog-to-Digital Converter (SAR ADC) technique with reduced Capacitive DAC (CDAC) is presented in this paper. By adopting the Adaptive Power Control (APC) technique for the two-stage latched type comparator and using bootstrap switch, power consumption can be reduced and overall system efficiency can be optimized. Bootstrapped switches also are used to enhance the sampling linearity at a high input frequency. The proposed SAR ADC reduces the average switching energy compared with conventional SAR ADC by adopting reduced the Most Significant Bit (MSB) cycling step with Dual-Sampling of the analog signal. This technique holds the signal at both comparator input asymmetrically in sample mode. Therefore, the MSB can be calculated without consuming any switching energy. The prototype SAR ADC was implemented in $0.18-{\mu}m$ CMOS technology and occupies $0.728mm^2$. The measurement results show the proposed ADC achieves an Effective Number-of-Bits (ENOB) of 10.73 at a sampling frequency of 750 kS/s and clock frequency of 25 MHz. It consumes only 0.13 mW from a 5.0-V supply and achieves the INL and DNL of +2.78/-2.45 LSB and +0.36/-0.73 LSB respectively, SINAD of 66.35 dB, and a Figures-of-Merit (FoM) of a 102 fJ/conversion-step.

The Analysis of Total Ionizing Dose Effects on Analog-to-Digital Converter for Space Application (우주용 ADC의 누적방사선량 영향 분석)

  • Kim, Tae-Hyo;Lee, Hee-Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.85-90
    • /
    • 2013
  • In this paper, 6bit SAR ADC tolerant to ionizing radiation is presented. Radiation tolerance is achieved by using the Dummy Gate Assisted (DGA) MOSFET which was proposed to suppress the leakage current induced by ionizing radiation and its comparing sample is designed with the conventional MOSFET. The designed ADC consists of binary capacitor DAC, dynamic latch comparator, and digital logic and was fabricated using a standard 0.35um CMOS process. Irradiation was performed by Co-60 gamma ray. After the irradiation, ADC designed with the conventional MOSFET did not operate properly. On the contrary, ADC designed with the DGA MOSFET showed a little parametric degradation of which DNL was increased from 0.7LSB to 2.0LSB and INL was increased from 1.8LSB to 3.2LSB. In spite of its parametric degradation, analog to digital conversion in the ADC with DGA MOSFET was found to be possible.

A 12-bit 1MS/s SAR ADC with Rail-to-Rail Input Range (Rail-to-Rail의 입력 신호 범위를 가지는 12-bit 1MS/s 축차비교형 아날로그-디지털 변환기)

  • Kim, Doo-Yeoun;Jung, Jae-Jin;Lim, Shin-Il;Kim, Su-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.355-358
    • /
    • 2010
  • As CMOS technology continues to scale down, signal processing is favorably done in the digital domain, which requires Analog-to-Digital (A/D) Converter to be integrated on-chip. This paper presents a design methodology of 12-bit 1-MS/s Rail-to-Rail fully differential SAR ADC using Deep N-well Switch based on binary search algorithm. Proposed A/D Converter has the following architecture and techniques. Firstly, chip size and power consumption is reduced due to split capacitor array architecture and charge recycling method. Secondly, fully differential architecture is used to reduce noise between the digital part and converters. Finally, to reduce the mismatch effect and noise error, the circuit is designed to be available for Rail-to-Rail input range using simple Deep N-well switch. The A/D Converter fabricated in a TSMC 0.18um 1P6M CMOS technology and has a Signal-to-Noise-and-Distortion-Ratio(SNDR) of 69 dB and Free-Dynamic-Range (SFDR) of 73 dB. The occupied active area is $0.6mm^2$.

Design of a 10-bit SAR ADC with Enhancement of Linearity On C-DAC Array (C-DAC Array내 선형성을 향상시킨 10비트 CMOS SAR ADC 설계)

  • Kim, Jeong Heum;Lee, Sang Heon;Yoon, Kwang Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.47-52
    • /
    • 2017
  • In this paper, CMOS SAR A/D converter 1.8V supply for the design of an A/D converter having an middle speed for the biological signal processing was designed. This paper proposes design of a 10-bit SAR Analog to Digital Converter improving linearity driven by MSB node of C-DAC array divided into 4 equal parts. It enhances linearity property, by retaining the analog input signal charging time at MSB node. Because MSB node samples analog input, it enhances resolution through getting initial input signal precisely. By using split capacitor on C-DAC array, it reduced chip size and power dissipation. The Proposed SAR A/D Converter is fabricated in 0.18um CMOS and measured 7.5 bits of ENOB at sampling frequency 4MS/s and power supply of 1.8V. It occupies a core area of $850{\times}650um^2$ and consumes 123.105uW. Therefore it results in 170.016fJ/step of FOM(Figure of Merit).

12-bit SAR A/D Converter with 6MSB sharing (상위 6비트를 공유하는 12 비트 SAR A/D 변환기)

  • Lee, Ho-Yong;Yoon, Kwang-Sub
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1012-1018
    • /
    • 2018
  • In this paper, CMOS SAR (Successive Approximation Register) A/D converter with 1.8V supply voltage is designed for IoT sensor processing. This paper proposes design of a 12-bit SAR A/D converter with two A / D converters in parallel to improve the sampling rate. A/D converter1 of the two A/D converters determines all the 12-bit bits, and another A/D converter2 uses the upper six bits of the other A/D converters to minimize power consumption and switching energy. Since the second A/D converter2 does not determine the upper 6 bits, the control circuits and SAR Logic are not needed and the area is minimized. In addition, the switching energy increases as the large capacitor capacity and the large voltage change in the C-DAC, and the second A/D converter does not determine the upper 6 bits, thereby reducing the switching energy. It is also possible to reduce the process variation in the C-DAC by proposed structure by the split capacitor capacity in the C-DAC equals the unit capacitor capacity. The proposed SAR A/D converter was designed using 0.18um CMOS process, and the supply voltage of 1.8V, the conversion speed of 10MS/s, and the Effective Number of Bit (ENOB) of 10.2 bits were measured. The area of core block is $600{\times}900um^2$, the total power consumption is $79.58{\mu}W$, and the FOM (Figure of Merit) is 6.716fJ / step.

Design of a Low-Power 8-bit 1-MS/s CMOS Asynchronous SAR ADC for Sensor Node Applications (센서 노드 응용을 위한 저전력 8비트 1MS/s CMOS 비동기 축차근사형 ADC 설계)

  • Jihun Son;Minseok Kim;Jimin Cheon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.454-464
    • /
    • 2023
  • This paper proposes a low-power 8-bit asynchronous SAR ADC with a sampling rate of 1 MS/s for sensor node applications. The ADC uses bootstrapped switches to improve linearity and applies a VCM-based CDAC switching technique to reduce the power consumption and area of the DAC. Conventional synchronous SAR ADCs that operate in synchronization with an external clock suffer from high power consumption due to the use of a clock faster than the sampling rate, which can be overcome by using an asynchronous SAR ADC structure that handles internal comparisons in an asynchronous manner. In addition, the SAR logic is designed using dynamic logic circuits to reduce the large digital power consumption that occurs in low resolution ADC designs. The proposed ADC was simulated in a 180-nm CMOS process, and at a 1.8 V supply voltage and a sampling rate of 1 MS/s, it consumed 46.06 𝜇W of power, achieved an SNDR of 49.76 dB and an ENOB of 7.9738 bits, and obtained a FoM of 183.2 fJ/conv-step. The simulated DNL and INL are +0.186/-0.157 LSB and +0.111/-0.169 LSB.

A 10-bit 20-MS/s Asynchronous SAR ADC using Self-calibrating CDAC (자체 보정 CDAC를 이용한 10비트 20MS/s 비동기 축차근사형 ADC)

  • Youn, Eun-ji;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • A capacitor self-calibration is proposed to improve the linearity of the capacitor digital-to-analog converter (CDAC) for an asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) with 10-bit resolution. The proposed capacitor self-calibration is performed so that the value of each capacitor of the upper 5 bits of the 10-bit CDAC is equal to the sum of the values of the lower capacitors. According to the behavioral simulation results, the proposed capacitor self-calibration improves the performances of differential nonlinearity (DNL) and integral nonlinearity (INL) from -0.810/+0.194 LSBs and -0.832/+0.832 LSBs to -0.235/+0.178 LSBs and -0.227/+0.227 LSBs, respectively, when the maximum capacitor mismatch of the CDAC is 4%. The proposed 10-bit 20-MS/s asynchronous SAR ADC is implemented using a 110-nm CMOS process with supply of 1.2 V. The area and power consumption of the proposed asynchronous SAR ADC are $0.205mm^2$ and 1.25 mW, respectively. The proposed asynchronous SAR ADC with the capacitor calibration has a effective number of bits (ENOBs) of 9.194 bits at a sampling rate of 20 MS/s about a $2.4-V_{PP}$ differential analog input with a frequency of 96.13 kHz.

Design of a Low Power 10bit Flash SAR A/D Converter (저 전력 10비트 플래시-SAR A/D 변환기 설계)

  • Lee, Gi-Yoon;Kim, Jeong-Heum;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.613-618
    • /
    • 2015
  • This paper proposed a low power CMOS Flash-SAR A/D converter which consists of a Flash A/D converter for 2 most significant bits and a SAR A/D converter with capacitor D/A converter for 8 least significant bits. Employment of a Flash A/D converter allows the proposed circuit to enhance the conversion speed. The SAR A/D converter with capacitor D/A converter provides a low power dissipation. The proposed A/D converter consumes $136{\mu}W$ with a power supply of 1V under a $0.18{\mu}m$ CMOS process and achieves 9.16 effective number of bits for sampling frequency up to 2MHz. Therefore it results in 120fJ/step of Figure of Merit (FoM).

A Signal Readout System for CNT Sensor Arrays (CNT 센서 어레이를 위한 신호 검출 시스템)

  • Shin, Young-San;Wee, Jae-Kyung;Song, In-Chae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.9
    • /
    • pp.31-39
    • /
    • 2011
  • In this paper, we propose a signal readout system with small area and low power consumption for CNT sensor arrays. The proposed system consists of signal readout circuitry, a digital controller, and UART I/O. The key components of the signal readout circuitry are 64 transimpedance amplifiers (TIA) and SAR-ADC with 11-bit resolution. The TIA adopts an active input current mirror (AICM) for voltage biasing and current amplification of a sensor. The proposed architecture can reduce area and power without sampling rate degradation because the 64 TIAs share a variable gain amplifier (VGA) which needs large area and high power due to resistive feedback. In addition, the SAR-ADC is designed for low power with modified algorithm where the operation of the lower bits can be skipped according to an input voltage level. The operation of ADC is controlled by a digital controller based on UART protocol. The data of ADC can be monitored on a computer terminal. The signal readout circuitry was designed with 0.13${\mu}m$ CMOS technology. It occupies the area of 0.173 $mm^2$ and consumes 77.06${\mu}W$ at the conversion rate of 640 samples/s. According to measurement, the linearity error is under 5.3% in the input sensing current range of 10nA - 10${\mu}A$. The UART I/O and the digital controller were designed with 0.18${\mu}m$ CMOS technology and their area is 0.251 $mm^2$.

The Low Area 12-bit SAR ADC (저면적 12비트 연속 근사형 레지스터 아날로그-디지털 변환기)

  • Sung, Myeong-U;Choi, Geun-Ho;Kim, Shin-Gon;Rastegar, Habib;Tall, Abu Abdoulaye;Kurbanov, Murod;Choi, Seung-Woo;Pushpalatha, Chandrasekar;Ryu, Jee-Youl;Noh, Seok-Ho;Kil, Keun-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.861-862
    • /
    • 2015
  • In this paper we present a low area 12-bit SAR ADC (Successive Approximation Register Analog-to-Digital Converter). The proposed circuit is fabricated using Magnachip/SK Hynix 1-Poly 6-Metal $0.18-{\mu}m$ CMOS process, and it is powered by a 1.8-V supply. Total chip area is reduced by replacing the MIM capacitors with MOS capacitors instead of the capacitors consisting of overall part in chip area. The proposed circuit showed improved power dissipation of 1.9mW, and chip area of $0.45mm^2$ as compared to conventional research results at the power supply of 1.8V. The designed circuit also showed high SNDR (Signal-to-Noise Distortion Ratio) of 70.51dB, and excellent effective number of bits of 11.4bits.

  • PDF