• 제목/요약/키워드: Subway ventilation system

검색결과 72건 처리시간 0.021초

지하철 터널 내 열차풍의 수치해석적 연구 (A NUMERICAL ANALYSIS OF THE TRAIN WIND IN THE SUBWAY TUNNEL)

  • 이준호;쥬레바 막슈다;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.496-500
    • /
    • 2010
  • Understanding train-wind is the best method to know how to optimize subway ventilation system. The capacity and efficiency of the subway ventilation system are known by pressure and velocity while train runs. Analysis of the internal flow in subway tunnel and around subway station are studied using numerical methods. Characteristics of internal flow and influence of subway ventilation system for the subway station with platform screen door and tunnel are analyzed by unsteady state analysis. Velocity and pressure of train wind transformation are compared at around subway ventilation system and the internal flow is investigated at the subway tunnel.

  • PDF

Analysis of Air Flow Rate through Subway Vent Shaft with Mechanical Ventilation System for Shape Change of Vent Shaft

  • Kim, Jung-Yup
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권2호
    • /
    • pp.45-51
    • /
    • 2009
  • Three-dimensional numerical analyses of mechanical ventilation system in vent shaft of subway in operation are carried out in relation with the different air flow passage of vent shaft and two ventilation operation modes of push/pull, The ventilation characteristics of vent shaft with regard to the shape change are evaluated. And the air flow rate through the vent shaft by ventilation system is measured within subway in operation to assess the accuracy and applicability of the numerical analysis method. The decrease of air flow rate due to vent-shaft change are between 0.7 to 2.2% in the cases examined.

자연에너지 활용을 위한 지하철 승강장 열환경에 관한 연구 (Study on the Subway Platform Thermal Environment for using Natural Energy)

  • 김회률;김동규;금종수;정용현;박성출
    • 수산해양교육연구
    • /
    • 제21권2호
    • /
    • pp.269-277
    • /
    • 2009
  • Ventilation equipment performs a central role to maintain comfort subway environment. So ventilation equipment of Busan subway line No.1 is required to improve thermal environment. In this study, conditions of thermal environment are presented to improve ventilation equipment at existing subway station platforms by measuring thermal environment of platforms operated ventilation equipment at 14 stations of Busan subway line No.1. AWS of data in comparison with the neighbouring platforms and thermal environment analysis. Thermal environment status of subway platform analysis results are as follows. 1)Daytime platform temperature was higher than outdoor temperature, but night time platform temperature was lower than outdoor temperature. 2)Train wind had effect on improving thermal comfort in platform. 3)When outdoor temperature is below $24^{\circ}C$, inlet air is able to lower than platform temperature. 4)Considering existing ventilation system, night purge systems is useful to improving platform thermal environment.

지하철 터널부로의 열 및 연기배출에 관한 연구 (A Study of Heat and Smoke Exhaust to Subway Tunnel Direction)

  • 이동호
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.1-8
    • /
    • 2004
  • This study aims to derive the operation method of a comprehensive ventilation system which is capable of providing passengers with safe exit paths from platforms in onboard fire situations. To accomplish this, the airflow distributions in subway platforms under 6 types of tunnel vent system were calculated in addition to having analyzed diffusion behaviors of smoke and heat exhaust in such states by performing 6 kinds of different ventilation scenarios in a 3-D Fire Dynamic Simulation (FDS) simulation model. In order to recommend the mechanical smoke exhaust operation mode, Subway Environmental Simulation(SES) is used to predict the airflow of the inlet and outlet tunnel for the subway station to clarify the safety evaluation fir the heat and smoke exhaust on subway fire events.

지하철터널 환기변환모드에 따른 안전성 평가에 관한 연구 (A study on safety evaluation by changing smoke ventilation mode in subway tunnels)

  • 이동호
    • 한국터널지하공간학회 논문집
    • /
    • 제5권4호
    • /
    • pp.389-400
    • /
    • 2003
  • 본 연구는 지하철방재대책의 일환으로 터널구간에 설치된 환기기의 제연절환 운전모드 및 승강장 선로부 환기장치를 포함한 6종류의 제연운전모드를 대상으로 승강장에 정차된 열차화재 시나리오에 따라 3차원 실시간 화재 시뮬레이션을 수행하여 제연방식별 열 및 연기전파특성을 규명함으로서, 승강장에서 열차 화재 발생시, 승객이 안전하게 최적 대피가 가능한 환기기의 제연절환 조합운전의 도출을 목표로 한다.

  • PDF

지하철 환기시스템의 최적화에 관한 연구 (Study on optimization technique for the design of ventilation system of subway)

  • 김광용;조재형;리쉬밍;양태윤
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.630-639
    • /
    • 1998
  • The present research aimed at development of a computer code for the optimal design of ventilation system based on one-dimensional analysis of the air flow. Model experiment and three-dimensional flow analysis have been implemented to determine loss coefficients that were needed for the optimization technique. A research on optimum shape of ventilation shaft has been also carried out through the three-dimensional analysis of the flow.

  • PDF

화재열차의 역사 접근 시 PSD가 설치된 역사 제연을 위한 환기장치 운전 비정상상태 해석 (A transient CFD simulation of ventilation system operation for smoke control in a subway station equipped with a Platform Screen Door(PSD) when a train under fire is approaching the station)

  • 신규호;허남건;원찬식
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.269-272
    • /
    • 2006
  • The heat and smoke which generated by subway under fire is one of the most harmful factor in air tighten underground station. To prevent this, Trackway Exhaust System(TES) can be used. The heat released from the train running in the tunnel raises the temperature at the platform and the trackway, and thus proper ventilation system is required for comfortable underground environment. When the fire is occurred, TES is operated as smoke exhaust mode from normal ventilation mode. In the present study, the subway station which is one of the line number 9 in Seoul subway is modeled, and fired situation is simulated with several ventilation mode of ventilation system in trackway. For this simulation whole station is modeled. Non steady state 3D simulation which considered train under fire is entering to the station is performed. Temperature and smoke distribution in platform and trackway are compared. To represent heat by fire, heat flux was given to the fired carriage, also to describe smoke by fire, concentration of CO is represented. As the result of present study, temperature and smoke distribution is different as the method of ventilation in trackway and platform is changed. In over side of trackway, the fan must be operated as exhaust mode for efficient elimination of heat and smoke, and supply mode of fan operation in under side shows better distribution of heat and smoke. The ventilation system which is changed from ventilation mode to exhaust mode can be applied to control heat and smoke under fire.

  • PDF

지하역사 제연모드 승객피난 성능평가 (PERFORMANCE EVALUATION OF PASSENGERS' EVACUATION FOR SMOKE-CONTROL MODES IN A SUBWAY STATION)

  • 박원희;장희철;정우성;이한수
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.8-12
    • /
    • 2008
  • Heat/smoke detectors are installed in most subway platforms in Korea to detect fire. Subway platform is divided by smoke-control zones for efficient smoke-control. Once the detectors detect heat or smoke, the smoke-control ventilation system in the platform and concourse is activated according to the smoke-control ventilation mode. Smoke-control mode during fires in Korean subway platforms is that the smoke zones operate by exhausting smoke while other zones in the platform and in the concourse which is the upper floor of the platform operate by supplying air or stopping any ventilation. This study is conducted to evaluate performance of passengers' evacuation for various smoke control modes in the subway station. Distribution of smoke and heat due to fire on the platform is analyzed by using Fire Dynamics Simulator(FDS V 4.06) of NIST. Various smoke-control ventilation modes and locations of fire are considered. Evacuation and movement of passengers within the platform is simulated by building EXODUS V.4.0.

전산열유체 해석결과를 이용한 지하역사 제연모드 승객피난 성능평가 (Performance Evaluation of Passengers' Evacuation for Smoke-Control Modes in a Subway Station Based on CFD Results)

  • 박원희;장용준;이한수;장희철;이덕희
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.276-279
    • /
    • 2008
  • Heat/smoke detectors are installed in most subway platforms in Korea to detect fire. Subway platform is divided by smoke-control zones for efficient smoke-control. Once the detectors detect heat or smoke, the smoke-control ventilation system in the platform and concourse is activated according to the smoke-control ventilation mode. Smoke-control mode during fires in Korean subway platforms is that the smoke zones operate by exhausting smoke while other zones in the platform and in the concourse which is the upper floor of the platform operate by supplying air or stopping any ventilation. This study is conducted to evaluate performance of passengers' evacuation for various smoke control modes in the subway station. Distribution of smoke and heat due to fire on the platform is analyzed by using Fire Dynamics Simulator(FDS V 4.06) of NIST. Various smoke-control ventilation modes and locations of fire are considered. Evacuation and movement of passengers within the platform is simulated by buildingEXODUS V 4.0.

  • PDF

지하역사 승강장 열환경 개선을 위한 연구 (제1보: 승강장 열환경 현황 및 실측결과) (The study for thermal environment improvement at subway station platform (Part 1: Thermal environment status and actual survey results))

  • 김희률;김동규;금종수;정용현;김종열;박성출
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.976-980
    • /
    • 2008
  • Ventilation equipment performs a cental role to maintain comfort subway environment. So ventilation equipment of Busan subway first line is needed to improvement thermal environment. In this study, condition of thermal environment is presented to improve ventilation equipment at existing subway station platforms by measuring thermal environment of platforms operated ventilation equipment at 14 stations of Busan subway first line. AWS of data in comparison with the neighbouring platforms and thermal environment analysis.

  • PDF